[NPU] change attention_mask to fp16 (#12400)

This commit is contained in:
binbin Deng 2024-11-14 17:20:29 +08:00 committed by GitHub
parent 7e50ff113c
commit d4d949443f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 25 additions and 28 deletions

View file

@ -122,7 +122,7 @@ class LowBitBaichuanMultiDecoderlayer(LLMBaseNNFactory):
# Self Attention
if mode == "decode":
attention_mask = self.create_input_op((self.batch_size, 1, 1, self.max_seq_len + 1),
dtype=np.int64)
dtype=np.float16)
else:
attention_mask = None
@ -287,7 +287,6 @@ class LowBitBaichuanMultiDecoderlayer(LLMBaseNNFactory):
else:
attn_weight = self.matmul(query_states, key_states, False, True) / (
math.sqrt(self.head_dim))
attention_mask = self.convert_to_fp16(attention_mask)
attn_weight = self.eltwise_add(attn_weight, attention_mask)
attn_weight = self.convert_to_fp32(attn_weight)
attn_weight = self.softmax(attn_weight, -1)
@ -451,7 +450,7 @@ class FusedBaichuanLowBitMultiDecoderlayer(torch.nn.Module):
inputs = (
hidden_states.to(torch.float16),
attention_mask.to(torch.int64),
attention_mask.to(torch.float16),
position_ids.to(torch.int64),
)
@ -697,9 +696,9 @@ def run_decode(
pad_mask = (0, pad_len)
padded_causal_mask = F.pad(
attention_mask.to(torch.int64), pad_mask, value=torch.iinfo(torch.int64).min
attention_mask.to(torch.float16), pad_mask, value=torch.finfo(torch.float16).min
)
padded_causal_mask[:, :, :, -1] = 0
padded_causal_mask[:, :, :, -1] = 0.0
dist.recv(hidden_states, src=rank - 1)
layer_outputs = multi_decoder(
hidden_states,
@ -950,9 +949,9 @@ class PrefillRunner:
hidden_states = F.pad(hidden_states.to(torch.float16), (0, 0, 0, pad_len), value=0.0)
position_ids = F.pad(position_ids, (0, pad_len), value=0)
attention_mask = F.pad(
attention_mask.to(torch.int64),
attention_mask.to(torch.float16),
(0, pad_len, 0, pad_len),
value=torch.iinfo(torch.int64).min,
value=torch.finfo(torch.float16).min,
)
args = (hidden_states, position_ids, attention_mask, past_key_value)

View file

@ -113,14 +113,14 @@ class LowBitLlamaMultiDecoderlayer(LLMBaseNNFactory):
# Self Attention
if mode == "decode":
attention_mask = self.create_input_op((self.batch_size, 1, 1, self.max_seq_len + 1),
dtype=np.int64)
dtype=np.float16)
else:
if use_prefill_sdp:
attention_mask = None
else:
attention_mask = self.create_input_op((self.batch_size, 1, self.seq_len,
self.seq_len),
dtype=np.int64)
dtype=np.float16)
if self.cached_cos is None:
if mode == "prefill":
position_ids = self.create_input_op((self.batch_size, self.seq_len), dtype=np.int64)
@ -364,7 +364,7 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
inputs = (
hidden_states.to(torch.float16),
attention_mask.to(torch.int64),
attention_mask.to(torch.float16),
)
if self.cached_cos is None:
@ -494,7 +494,7 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
position_ids.to(torch.int64))
else:
inputs = (hidden_states.to(torch.float16),
attention_mask.to(torch.int64),
attention_mask.to(torch.float16),
position_ids.to(torch.int64))
if self.cached_cos is None:
inputs += (cos.to(torch.float32), sin.to(torch.float32),)
@ -625,7 +625,7 @@ def run_decode(
past_key_values = input_queue.get()
else:
past_seen_tokens = past_key_values.get_seq_length()
attention_mask = torch.ones([1, past_seen_tokens + 1], dtype=torch.int64)
attention_mask = torch.ones([1, past_seen_tokens + 1], dtype=torch.float16)
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + 1, device=hidden_states.device
)
@ -938,9 +938,9 @@ class PrefillRunner:
hidden_states = F.pad(hidden_states.to(torch.float16), (0, 0, 0, pad_len), value=0.0)
position_ids = F.pad(position_ids, (0, pad_len), value=0)
attention_mask = F.pad(
attention_mask.to(torch.int64),
attention_mask.to(torch.float16),
(0, pad_len, 0, pad_len),
value=torch.iinfo(torch.int64).min,
value=torch.finfo(torch.float16).min,
)
args = (hidden_states, position_ids, attention_mask, past_key_value,

View file

@ -125,10 +125,10 @@ class LowBitMinicpmMultiDecoderlayer(LLMBaseNNFactory):
# Self Attention
if mode == "decode":
attention_mask = self.create_input_op((self.batch_size, 1, 1, self.max_seq_len + 1),
dtype=np.int64)
dtype=np.float16)
else:
attention_mask = self.create_input_op((self.batch_size, 1, self.seq_len, self.seq_len),
dtype=np.int64)
dtype=np.float16)
position_ids = self.create_input_op((self.batch_size, self.seq_len), dtype=np.int64)
@ -357,7 +357,7 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
inputs = (
hidden_states.to(torch.float16),
attention_mask.to(torch.int64),
attention_mask.to(torch.float16),
position_ids.to(torch.int64),
)
@ -475,7 +475,7 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
backend_cls = self.backend_cls_prefill
inputs = (hidden_states.to(torch.float16),
attention_mask.to(torch.int64),
attention_mask.to(torch.float16),
position_ids.to(torch.int64))
inputs += (self.layer_norm_0, self.layer_norm_1)
hidden_states, past_key, past_value = run_model(
@ -599,7 +599,7 @@ def run_decode(
past_key_values = input_queue.get()
else:
past_seen_tokens = past_key_values.get_seq_length()
attention_mask = torch.ones([1, past_seen_tokens + 1], dtype=torch.int64)
attention_mask = torch.ones([1, past_seen_tokens + 1], dtype=torch.float16)
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + 1, device=hidden_states.device
)
@ -878,9 +878,9 @@ class PrefillRunner:
hidden_states = F.pad(hidden_states.to(torch.float16), (0, 0, 0, pad_len), value=0.0)
position_ids = F.pad(position_ids, (0, pad_len), value=0)
attention_mask = F.pad(
attention_mask.to(torch.int64),
attention_mask.to(torch.float16),
(0, pad_len, 0, pad_len),
value=torch.iinfo(torch.int64).min,
value=torch.finfo(torch.float16).min,
)
args = (hidden_states, position_ids, attention_mask, past_key_value)

View file

@ -247,8 +247,6 @@ class LLMBaseNNFactory(NNFactory):
attn_weight = self.matmul(query_states, key_states, False, True) / (
math.sqrt(head_dim)
)
if mode != "prefill":
attention_mask = self.convert_to_fp16(attention_mask)
attn_weight = self.eltwise_add(attn_weight, attention_mask)
attn_weight = self.convert_to_fp32(attn_weight)
attn_weight = self.softmax(attn_weight, -1)

View file

@ -141,7 +141,7 @@ class LowBitQwenMultiDecoderlayer(LLMBaseNNFactory):
# Self Attention
if mode == "decode":
attention_mask = self.create_input_op(
(self.batch_size, 1, 1, self.max_seq_len + 1), dtype=np.int64)
(self.batch_size, 1, 1, self.max_seq_len + 1), dtype=np.float16)
else:
attention_mask = self.create_input_op(
(self.batch_size, 1, self.seq_len, self.seq_len), dtype=np.float16)
@ -403,7 +403,7 @@ class FusedQwenLowBitMultiDecoderlayer(torch.nn.Module):
inputs = (
hidden_states.to(torch.float16),
attention_mask.to(torch.int64),
attention_mask.to(torch.float16),
position_ids.to(torch.int64),
)
@ -649,7 +649,7 @@ def run_decode(
past_key_values = input_queue.get()
else:
past_seen_tokens = past_key_values.get_seq_length()
attention_mask = torch.ones([1, past_seen_tokens + 1], dtype=torch.int64)
attention_mask = torch.ones([1, past_seen_tokens + 1], dtype=torch.float16)
position_ids = torch.arange(
past_seen_tokens,
1 + past_seen_tokens,
@ -672,9 +672,9 @@ def run_decode(
causal_mask[:, :, :, -1] = torch.finfo(torch.float16).min
pad_mask = (0, pad_len)
padded_causal_mask = F.pad(
causal_mask.to(torch.int64), pad_mask, value=torch.iinfo(torch.int64).min
causal_mask.to(torch.float16), pad_mask, value=torch.finfo(torch.float16).min
)
padded_causal_mask[:, :, :, -1] = 0
padded_causal_mask[:, :, :, -1] = 0.0
dist.recv(hidden_states, src=rank - 1)
layer_outputs = multi_decoder(
hidden_states,