[NPU] change attention_mask to fp16 (#12400)
This commit is contained in:
parent
7e50ff113c
commit
d4d949443f
5 changed files with 25 additions and 28 deletions
|
|
@ -122,7 +122,7 @@ class LowBitBaichuanMultiDecoderlayer(LLMBaseNNFactory):
|
||||||
# Self Attention
|
# Self Attention
|
||||||
if mode == "decode":
|
if mode == "decode":
|
||||||
attention_mask = self.create_input_op((self.batch_size, 1, 1, self.max_seq_len + 1),
|
attention_mask = self.create_input_op((self.batch_size, 1, 1, self.max_seq_len + 1),
|
||||||
dtype=np.int64)
|
dtype=np.float16)
|
||||||
else:
|
else:
|
||||||
attention_mask = None
|
attention_mask = None
|
||||||
|
|
||||||
|
|
@ -287,7 +287,6 @@ class LowBitBaichuanMultiDecoderlayer(LLMBaseNNFactory):
|
||||||
else:
|
else:
|
||||||
attn_weight = self.matmul(query_states, key_states, False, True) / (
|
attn_weight = self.matmul(query_states, key_states, False, True) / (
|
||||||
math.sqrt(self.head_dim))
|
math.sqrt(self.head_dim))
|
||||||
attention_mask = self.convert_to_fp16(attention_mask)
|
|
||||||
attn_weight = self.eltwise_add(attn_weight, attention_mask)
|
attn_weight = self.eltwise_add(attn_weight, attention_mask)
|
||||||
attn_weight = self.convert_to_fp32(attn_weight)
|
attn_weight = self.convert_to_fp32(attn_weight)
|
||||||
attn_weight = self.softmax(attn_weight, -1)
|
attn_weight = self.softmax(attn_weight, -1)
|
||||||
|
|
@ -451,7 +450,7 @@ class FusedBaichuanLowBitMultiDecoderlayer(torch.nn.Module):
|
||||||
|
|
||||||
inputs = (
|
inputs = (
|
||||||
hidden_states.to(torch.float16),
|
hidden_states.to(torch.float16),
|
||||||
attention_mask.to(torch.int64),
|
attention_mask.to(torch.float16),
|
||||||
position_ids.to(torch.int64),
|
position_ids.to(torch.int64),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
@ -697,9 +696,9 @@ def run_decode(
|
||||||
|
|
||||||
pad_mask = (0, pad_len)
|
pad_mask = (0, pad_len)
|
||||||
padded_causal_mask = F.pad(
|
padded_causal_mask = F.pad(
|
||||||
attention_mask.to(torch.int64), pad_mask, value=torch.iinfo(torch.int64).min
|
attention_mask.to(torch.float16), pad_mask, value=torch.finfo(torch.float16).min
|
||||||
)
|
)
|
||||||
padded_causal_mask[:, :, :, -1] = 0
|
padded_causal_mask[:, :, :, -1] = 0.0
|
||||||
dist.recv(hidden_states, src=rank - 1)
|
dist.recv(hidden_states, src=rank - 1)
|
||||||
layer_outputs = multi_decoder(
|
layer_outputs = multi_decoder(
|
||||||
hidden_states,
|
hidden_states,
|
||||||
|
|
@ -950,9 +949,9 @@ class PrefillRunner:
|
||||||
hidden_states = F.pad(hidden_states.to(torch.float16), (0, 0, 0, pad_len), value=0.0)
|
hidden_states = F.pad(hidden_states.to(torch.float16), (0, 0, 0, pad_len), value=0.0)
|
||||||
position_ids = F.pad(position_ids, (0, pad_len), value=0)
|
position_ids = F.pad(position_ids, (0, pad_len), value=0)
|
||||||
attention_mask = F.pad(
|
attention_mask = F.pad(
|
||||||
attention_mask.to(torch.int64),
|
attention_mask.to(torch.float16),
|
||||||
(0, pad_len, 0, pad_len),
|
(0, pad_len, 0, pad_len),
|
||||||
value=torch.iinfo(torch.int64).min,
|
value=torch.finfo(torch.float16).min,
|
||||||
)
|
)
|
||||||
|
|
||||||
args = (hidden_states, position_ids, attention_mask, past_key_value)
|
args = (hidden_states, position_ids, attention_mask, past_key_value)
|
||||||
|
|
|
||||||
|
|
@ -113,14 +113,14 @@ class LowBitLlamaMultiDecoderlayer(LLMBaseNNFactory):
|
||||||
# Self Attention
|
# Self Attention
|
||||||
if mode == "decode":
|
if mode == "decode":
|
||||||
attention_mask = self.create_input_op((self.batch_size, 1, 1, self.max_seq_len + 1),
|
attention_mask = self.create_input_op((self.batch_size, 1, 1, self.max_seq_len + 1),
|
||||||
dtype=np.int64)
|
dtype=np.float16)
|
||||||
else:
|
else:
|
||||||
if use_prefill_sdp:
|
if use_prefill_sdp:
|
||||||
attention_mask = None
|
attention_mask = None
|
||||||
else:
|
else:
|
||||||
attention_mask = self.create_input_op((self.batch_size, 1, self.seq_len,
|
attention_mask = self.create_input_op((self.batch_size, 1, self.seq_len,
|
||||||
self.seq_len),
|
self.seq_len),
|
||||||
dtype=np.int64)
|
dtype=np.float16)
|
||||||
if self.cached_cos is None:
|
if self.cached_cos is None:
|
||||||
if mode == "prefill":
|
if mode == "prefill":
|
||||||
position_ids = self.create_input_op((self.batch_size, self.seq_len), dtype=np.int64)
|
position_ids = self.create_input_op((self.batch_size, self.seq_len), dtype=np.int64)
|
||||||
|
|
@ -364,7 +364,7 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
|
||||||
|
|
||||||
inputs = (
|
inputs = (
|
||||||
hidden_states.to(torch.float16),
|
hidden_states.to(torch.float16),
|
||||||
attention_mask.to(torch.int64),
|
attention_mask.to(torch.float16),
|
||||||
)
|
)
|
||||||
|
|
||||||
if self.cached_cos is None:
|
if self.cached_cos is None:
|
||||||
|
|
@ -494,7 +494,7 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
|
||||||
position_ids.to(torch.int64))
|
position_ids.to(torch.int64))
|
||||||
else:
|
else:
|
||||||
inputs = (hidden_states.to(torch.float16),
|
inputs = (hidden_states.to(torch.float16),
|
||||||
attention_mask.to(torch.int64),
|
attention_mask.to(torch.float16),
|
||||||
position_ids.to(torch.int64))
|
position_ids.to(torch.int64))
|
||||||
if self.cached_cos is None:
|
if self.cached_cos is None:
|
||||||
inputs += (cos.to(torch.float32), sin.to(torch.float32),)
|
inputs += (cos.to(torch.float32), sin.to(torch.float32),)
|
||||||
|
|
@ -625,7 +625,7 @@ def run_decode(
|
||||||
past_key_values = input_queue.get()
|
past_key_values = input_queue.get()
|
||||||
else:
|
else:
|
||||||
past_seen_tokens = past_key_values.get_seq_length()
|
past_seen_tokens = past_key_values.get_seq_length()
|
||||||
attention_mask = torch.ones([1, past_seen_tokens + 1], dtype=torch.int64)
|
attention_mask = torch.ones([1, past_seen_tokens + 1], dtype=torch.float16)
|
||||||
cache_position = torch.arange(
|
cache_position = torch.arange(
|
||||||
past_seen_tokens, past_seen_tokens + 1, device=hidden_states.device
|
past_seen_tokens, past_seen_tokens + 1, device=hidden_states.device
|
||||||
)
|
)
|
||||||
|
|
@ -938,9 +938,9 @@ class PrefillRunner:
|
||||||
hidden_states = F.pad(hidden_states.to(torch.float16), (0, 0, 0, pad_len), value=0.0)
|
hidden_states = F.pad(hidden_states.to(torch.float16), (0, 0, 0, pad_len), value=0.0)
|
||||||
position_ids = F.pad(position_ids, (0, pad_len), value=0)
|
position_ids = F.pad(position_ids, (0, pad_len), value=0)
|
||||||
attention_mask = F.pad(
|
attention_mask = F.pad(
|
||||||
attention_mask.to(torch.int64),
|
attention_mask.to(torch.float16),
|
||||||
(0, pad_len, 0, pad_len),
|
(0, pad_len, 0, pad_len),
|
||||||
value=torch.iinfo(torch.int64).min,
|
value=torch.finfo(torch.float16).min,
|
||||||
)
|
)
|
||||||
|
|
||||||
args = (hidden_states, position_ids, attention_mask, past_key_value,
|
args = (hidden_states, position_ids, attention_mask, past_key_value,
|
||||||
|
|
|
||||||
|
|
@ -125,10 +125,10 @@ class LowBitMinicpmMultiDecoderlayer(LLMBaseNNFactory):
|
||||||
# Self Attention
|
# Self Attention
|
||||||
if mode == "decode":
|
if mode == "decode":
|
||||||
attention_mask = self.create_input_op((self.batch_size, 1, 1, self.max_seq_len + 1),
|
attention_mask = self.create_input_op((self.batch_size, 1, 1, self.max_seq_len + 1),
|
||||||
dtype=np.int64)
|
dtype=np.float16)
|
||||||
else:
|
else:
|
||||||
attention_mask = self.create_input_op((self.batch_size, 1, self.seq_len, self.seq_len),
|
attention_mask = self.create_input_op((self.batch_size, 1, self.seq_len, self.seq_len),
|
||||||
dtype=np.int64)
|
dtype=np.float16)
|
||||||
|
|
||||||
position_ids = self.create_input_op((self.batch_size, self.seq_len), dtype=np.int64)
|
position_ids = self.create_input_op((self.batch_size, self.seq_len), dtype=np.int64)
|
||||||
|
|
||||||
|
|
@ -357,7 +357,7 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
|
||||||
|
|
||||||
inputs = (
|
inputs = (
|
||||||
hidden_states.to(torch.float16),
|
hidden_states.to(torch.float16),
|
||||||
attention_mask.to(torch.int64),
|
attention_mask.to(torch.float16),
|
||||||
position_ids.to(torch.int64),
|
position_ids.to(torch.int64),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
@ -475,7 +475,7 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
|
||||||
|
|
||||||
backend_cls = self.backend_cls_prefill
|
backend_cls = self.backend_cls_prefill
|
||||||
inputs = (hidden_states.to(torch.float16),
|
inputs = (hidden_states.to(torch.float16),
|
||||||
attention_mask.to(torch.int64),
|
attention_mask.to(torch.float16),
|
||||||
position_ids.to(torch.int64))
|
position_ids.to(torch.int64))
|
||||||
inputs += (self.layer_norm_0, self.layer_norm_1)
|
inputs += (self.layer_norm_0, self.layer_norm_1)
|
||||||
hidden_states, past_key, past_value = run_model(
|
hidden_states, past_key, past_value = run_model(
|
||||||
|
|
@ -599,7 +599,7 @@ def run_decode(
|
||||||
past_key_values = input_queue.get()
|
past_key_values = input_queue.get()
|
||||||
else:
|
else:
|
||||||
past_seen_tokens = past_key_values.get_seq_length()
|
past_seen_tokens = past_key_values.get_seq_length()
|
||||||
attention_mask = torch.ones([1, past_seen_tokens + 1], dtype=torch.int64)
|
attention_mask = torch.ones([1, past_seen_tokens + 1], dtype=torch.float16)
|
||||||
cache_position = torch.arange(
|
cache_position = torch.arange(
|
||||||
past_seen_tokens, past_seen_tokens + 1, device=hidden_states.device
|
past_seen_tokens, past_seen_tokens + 1, device=hidden_states.device
|
||||||
)
|
)
|
||||||
|
|
@ -878,9 +878,9 @@ class PrefillRunner:
|
||||||
hidden_states = F.pad(hidden_states.to(torch.float16), (0, 0, 0, pad_len), value=0.0)
|
hidden_states = F.pad(hidden_states.to(torch.float16), (0, 0, 0, pad_len), value=0.0)
|
||||||
position_ids = F.pad(position_ids, (0, pad_len), value=0)
|
position_ids = F.pad(position_ids, (0, pad_len), value=0)
|
||||||
attention_mask = F.pad(
|
attention_mask = F.pad(
|
||||||
attention_mask.to(torch.int64),
|
attention_mask.to(torch.float16),
|
||||||
(0, pad_len, 0, pad_len),
|
(0, pad_len, 0, pad_len),
|
||||||
value=torch.iinfo(torch.int64).min,
|
value=torch.finfo(torch.float16).min,
|
||||||
)
|
)
|
||||||
|
|
||||||
args = (hidden_states, position_ids, attention_mask, past_key_value)
|
args = (hidden_states, position_ids, attention_mask, past_key_value)
|
||||||
|
|
|
||||||
|
|
@ -247,8 +247,6 @@ class LLMBaseNNFactory(NNFactory):
|
||||||
attn_weight = self.matmul(query_states, key_states, False, True) / (
|
attn_weight = self.matmul(query_states, key_states, False, True) / (
|
||||||
math.sqrt(head_dim)
|
math.sqrt(head_dim)
|
||||||
)
|
)
|
||||||
if mode != "prefill":
|
|
||||||
attention_mask = self.convert_to_fp16(attention_mask)
|
|
||||||
attn_weight = self.eltwise_add(attn_weight, attention_mask)
|
attn_weight = self.eltwise_add(attn_weight, attention_mask)
|
||||||
attn_weight = self.convert_to_fp32(attn_weight)
|
attn_weight = self.convert_to_fp32(attn_weight)
|
||||||
attn_weight = self.softmax(attn_weight, -1)
|
attn_weight = self.softmax(attn_weight, -1)
|
||||||
|
|
|
||||||
|
|
@ -141,7 +141,7 @@ class LowBitQwenMultiDecoderlayer(LLMBaseNNFactory):
|
||||||
# Self Attention
|
# Self Attention
|
||||||
if mode == "decode":
|
if mode == "decode":
|
||||||
attention_mask = self.create_input_op(
|
attention_mask = self.create_input_op(
|
||||||
(self.batch_size, 1, 1, self.max_seq_len + 1), dtype=np.int64)
|
(self.batch_size, 1, 1, self.max_seq_len + 1), dtype=np.float16)
|
||||||
else:
|
else:
|
||||||
attention_mask = self.create_input_op(
|
attention_mask = self.create_input_op(
|
||||||
(self.batch_size, 1, self.seq_len, self.seq_len), dtype=np.float16)
|
(self.batch_size, 1, self.seq_len, self.seq_len), dtype=np.float16)
|
||||||
|
|
@ -403,7 +403,7 @@ class FusedQwenLowBitMultiDecoderlayer(torch.nn.Module):
|
||||||
|
|
||||||
inputs = (
|
inputs = (
|
||||||
hidden_states.to(torch.float16),
|
hidden_states.to(torch.float16),
|
||||||
attention_mask.to(torch.int64),
|
attention_mask.to(torch.float16),
|
||||||
position_ids.to(torch.int64),
|
position_ids.to(torch.int64),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
@ -649,7 +649,7 @@ def run_decode(
|
||||||
past_key_values = input_queue.get()
|
past_key_values = input_queue.get()
|
||||||
else:
|
else:
|
||||||
past_seen_tokens = past_key_values.get_seq_length()
|
past_seen_tokens = past_key_values.get_seq_length()
|
||||||
attention_mask = torch.ones([1, past_seen_tokens + 1], dtype=torch.int64)
|
attention_mask = torch.ones([1, past_seen_tokens + 1], dtype=torch.float16)
|
||||||
position_ids = torch.arange(
|
position_ids = torch.arange(
|
||||||
past_seen_tokens,
|
past_seen_tokens,
|
||||||
1 + past_seen_tokens,
|
1 + past_seen_tokens,
|
||||||
|
|
@ -672,9 +672,9 @@ def run_decode(
|
||||||
causal_mask[:, :, :, -1] = torch.finfo(torch.float16).min
|
causal_mask[:, :, :, -1] = torch.finfo(torch.float16).min
|
||||||
pad_mask = (0, pad_len)
|
pad_mask = (0, pad_len)
|
||||||
padded_causal_mask = F.pad(
|
padded_causal_mask = F.pad(
|
||||||
causal_mask.to(torch.int64), pad_mask, value=torch.iinfo(torch.int64).min
|
causal_mask.to(torch.float16), pad_mask, value=torch.finfo(torch.float16).min
|
||||||
)
|
)
|
||||||
padded_causal_mask[:, :, :, -1] = 0
|
padded_causal_mask[:, :, :, -1] = 0.0
|
||||||
dist.recv(hidden_states, src=rank - 1)
|
dist.recv(hidden_states, src=rank - 1)
|
||||||
layer_outputs = multi_decoder(
|
layer_outputs = multi_decoder(
|
||||||
hidden_states,
|
hidden_states,
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue