[NPU L0] Update streaming mode of example (#12312)
This commit is contained in:
parent
126f95be80
commit
d409d9d0eb
7 changed files with 83 additions and 62 deletions
|
|
@ -72,28 +72,21 @@ Arguments info:
|
|||
- `--max-context-len MAX_CONTEXT_LEN`: Defines the maximum sequence length for both input and output tokens. It is default to be `1024`.
|
||||
- `--max-prompt-len MAX_PROMPT_LEN`: Defines the maximum number of tokens that the input prompt can contain. It is default to be `512`.
|
||||
- `--disable-transpose-value-cache`: Disable the optimization of transposing value cache.
|
||||
- `--disable-streaming`: Disable streaming mode of generation.
|
||||
|
||||
### Sample Output
|
||||
### Sample Output of Streaming Mode
|
||||
#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
|
||||
|
||||
```log
|
||||
Number of input tokens: 28
|
||||
Generated tokens: 32
|
||||
First token generation time: xxxx s
|
||||
Generation average latency: xxxx ms, (xxxx token/s)
|
||||
Generation time: xxxx s
|
||||
|
||||
Inference time: xxxx s
|
||||
-------------------- Input --------------------
|
||||
<s><s> [INST] <<SYS>>
|
||||
input length: 28
|
||||
<s>[INST] <<SYS>>
|
||||
|
||||
<</SYS>>
|
||||
|
||||
What is AI? [/INST]
|
||||
-------------------- Output --------------------
|
||||
<s><s> [INST] <<SYS>>
|
||||
AI (Artificial Intelligence) is a field of computer science and technology that focuses on the development of intelligent machines that can perform
|
||||
|
||||
<</SYS>>
|
||||
|
||||
What is AI? [/INST] AI (Artificial Intelligence) is a field of computer science and technology that focuses on the development of intelligent machines that can perform
|
||||
Inference time: xxxx s
|
||||
```
|
||||
|
|
|
|||
|
|
@ -20,7 +20,7 @@ import torch
|
|||
import time
|
||||
import argparse
|
||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
from transformers import AutoTokenizer, TextStreamer
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
|
@ -61,6 +61,7 @@ if __name__ == "__main__":
|
|||
parser.add_argument("--max-context-len", type=int, default=1024)
|
||||
parser.add_argument("--max-prompt-len", type=int, default=512)
|
||||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
||||
parser.add_argument("--disable-streaming", action="store_true", default=False)
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
|
@ -92,6 +93,11 @@ if __name__ == "__main__":
|
|||
if args.lowbit_path and not os.path.exists(args.lowbit_path):
|
||||
model.save_low_bit(args.lowbit_path)
|
||||
|
||||
if args.disable_streaming:
|
||||
streamer = None
|
||||
else:
|
||||
streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
|
||||
|
||||
DEFAULT_SYSTEM_PROMPT = """\
|
||||
"""
|
||||
|
||||
|
|
@ -99,22 +105,22 @@ if __name__ == "__main__":
|
|||
print("done")
|
||||
with torch.inference_mode():
|
||||
print("finish to load")
|
||||
for i in range(5):
|
||||
for i in range(3):
|
||||
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
|
||||
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||
print("-" * 20, "Input", "-" * 20)
|
||||
print("input length:", len(_input_ids[0]))
|
||||
print(prompt)
|
||||
print("-" * 20, "Output", "-" * 20)
|
||||
st = time.time()
|
||||
output = model.generate(
|
||||
_input_ids, max_new_tokens=args.n_predict, do_print=True
|
||||
_input_ids, max_new_tokens=args.n_predict, streamer=streamer
|
||||
)
|
||||
end = time.time()
|
||||
if args.disable_streaming:
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
||||
print(output_str)
|
||||
print(f"Inference time: {end-st} s")
|
||||
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
|
||||
print("-" * 20, "Input", "-" * 20)
|
||||
print(input_str)
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
||||
print("-" * 20, "Output", "-" * 20)
|
||||
print(output_str)
|
||||
|
||||
print("-" * 80)
|
||||
print("done")
|
||||
|
|
|
|||
|
|
@ -20,7 +20,7 @@ import torch
|
|||
import time
|
||||
import argparse
|
||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
from transformers import AutoTokenizer, TextStreamer
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
|
@ -62,6 +62,7 @@ if __name__ == "__main__":
|
|||
parser.add_argument("--max-prompt-len", type=int, default=512)
|
||||
parser.add_argument("--quantization_group_size", type=int, default=0)
|
||||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
||||
parser.add_argument("--disable-streaming", action="store_true", default=False)
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
|
@ -92,6 +93,11 @@ if __name__ == "__main__":
|
|||
if args.lowbit_path and not os.path.exists(args.lowbit_path):
|
||||
model.save_low_bit(args.lowbit_path)
|
||||
|
||||
if args.disable_streaming:
|
||||
streamer = None
|
||||
else:
|
||||
streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
|
||||
|
||||
DEFAULT_SYSTEM_PROMPT = """\
|
||||
"""
|
||||
|
||||
|
|
@ -99,22 +105,22 @@ if __name__ == "__main__":
|
|||
print("done")
|
||||
with torch.inference_mode():
|
||||
print("finish to load")
|
||||
for i in range(5):
|
||||
for i in range(3):
|
||||
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
|
||||
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||
print("-" * 20, "Input", "-" * 20)
|
||||
print("input length:", len(_input_ids[0]))
|
||||
print(prompt)
|
||||
print("-" * 20, "Output", "-" * 20)
|
||||
st = time.time()
|
||||
output = model.generate(
|
||||
_input_ids, max_new_tokens=args.n_predict, do_print=True
|
||||
_input_ids, max_new_tokens=args.n_predict, streamer=streamer
|
||||
)
|
||||
end = time.time()
|
||||
if args.disable_streaming:
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
||||
print(output_str)
|
||||
print(f"Inference time: {end-st} s")
|
||||
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
|
||||
print("-" * 20, "Input", "-" * 20)
|
||||
print(input_str)
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
||||
print("-" * 20, "Output", "-" * 20)
|
||||
print(output_str)
|
||||
|
||||
print("-" * 80)
|
||||
print("done")
|
||||
|
|
|
|||
|
|
@ -20,7 +20,7 @@ import torch
|
|||
import time
|
||||
import argparse
|
||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
from transformers import AutoTokenizer, TextStreamer
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
|
@ -68,6 +68,7 @@ if __name__ == "__main__":
|
|||
parser.add_argument("--max-prompt-len", type=int, default=512)
|
||||
parser.add_argument("--quantization_group_size", type=int, default=0)
|
||||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
||||
parser.add_argument("--disable-streaming", action="store_true", default=False)
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
|
@ -98,26 +99,31 @@ if __name__ == "__main__":
|
|||
if args.lowbit_path and not os.path.exists(args.lowbit_path):
|
||||
model.save_low_bit(args.lowbit_path)
|
||||
|
||||
if args.disable_streaming:
|
||||
streamer = None
|
||||
else:
|
||||
streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
|
||||
|
||||
print("-" * 80)
|
||||
print("done")
|
||||
with torch.inference_mode():
|
||||
print("finish to load")
|
||||
for i in range(5):
|
||||
for i in range(3):
|
||||
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
|
||||
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||
print("-" * 20, "Input", "-" * 20)
|
||||
print("input length:", len(_input_ids[0]))
|
||||
print(prompt)
|
||||
print("-" * 20, "Output", "-" * 20)
|
||||
st = time.time()
|
||||
output = model.generate(
|
||||
_input_ids, max_new_tokens=args.n_predict, do_print=True
|
||||
_input_ids, max_new_tokens=args.n_predict, streamer=streamer
|
||||
)
|
||||
end = time.time()
|
||||
if args.disable_streaming:
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
||||
print(output_str)
|
||||
print(f"Inference time: {end-st} s")
|
||||
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
|
||||
print("-" * 20, "Input", "-" * 20)
|
||||
print(input_str)
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
||||
print("-" * 20, "Output", "-" * 20)
|
||||
print(output_str)
|
||||
|
||||
print("-" * 80)
|
||||
print("done")
|
||||
|
|
|
|||
|
|
@ -19,7 +19,7 @@ import torch
|
|||
import time
|
||||
import argparse
|
||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
from transformers import AutoTokenizer, TextStreamer
|
||||
from transformers.utils import logging
|
||||
import os
|
||||
|
||||
|
|
@ -48,6 +48,7 @@ if __name__ == "__main__":
|
|||
parser.add_argument("--max-context-len", type=int, default=1024)
|
||||
parser.add_argument("--max-prompt-len", type=int, default=512)
|
||||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
||||
parser.add_argument("--disable-streaming", action="store_true", default=False)
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
|
@ -79,26 +80,31 @@ if __name__ == "__main__":
|
|||
if args.lowbit_path and not os.path.exists(args.lowbit_path):
|
||||
model.save_low_bit(args.lowbit_path)
|
||||
|
||||
if args.disable_streaming:
|
||||
streamer = None
|
||||
else:
|
||||
streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
|
||||
|
||||
print("-" * 80)
|
||||
print("done")
|
||||
with torch.inference_mode():
|
||||
print("finish to load")
|
||||
for i in range(5):
|
||||
for i in range(3):
|
||||
prompt = "<用户>{}<AI>".format(args.prompt)
|
||||
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||
print("-" * 20, "Input", "-" * 20)
|
||||
print("input length:", len(_input_ids[0]))
|
||||
print(prompt)
|
||||
print("-" * 20, "Output", "-" * 20)
|
||||
st = time.time()
|
||||
output = model.generate(
|
||||
_input_ids, max_new_tokens=args.n_predict, do_print=True
|
||||
_input_ids, max_new_tokens=args.n_predict, streamer=streamer
|
||||
)
|
||||
end = time.time()
|
||||
if args.disable_streaming:
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
||||
print(output_str)
|
||||
print(f"Inference time: {end-st} s")
|
||||
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
|
||||
print("-" * 20, "Input", "-" * 20)
|
||||
print(input_str)
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
||||
print("-" * 20, "Output", "-" * 20)
|
||||
print(output_str)
|
||||
|
||||
print("-" * 80)
|
||||
print("done")
|
||||
|
|
|
|||
|
|
@ -20,7 +20,7 @@ import torch
|
|||
import time
|
||||
import argparse
|
||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
from transformers import AutoTokenizer, TextStreamer
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
|
@ -50,6 +50,7 @@ if __name__ == "__main__":
|
|||
parser.add_argument('--load_in_low_bit', type=str, default="sym_int4",
|
||||
help='Load in low bit to use')
|
||||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
||||
parser.add_argument("--disable-streaming", action="store_true", default=False)
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
|
@ -81,6 +82,11 @@ if __name__ == "__main__":
|
|||
if args.lowbit_path and not os.path.exists(args.lowbit_path):
|
||||
model.save_low_bit(args.lowbit_path)
|
||||
|
||||
if args.disable_streaming:
|
||||
streamer = None
|
||||
else:
|
||||
streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
|
||||
|
||||
print("-" * 80)
|
||||
print("done")
|
||||
messages = [{"role": "system", "content": "You are a helpful assistant."},
|
||||
|
|
@ -90,21 +96,21 @@ if __name__ == "__main__":
|
|||
add_generation_prompt=True)
|
||||
with torch.inference_mode():
|
||||
print("finish to load")
|
||||
for i in range(5):
|
||||
for i in range(3):
|
||||
_input_ids = tokenizer([text], return_tensors="pt").input_ids
|
||||
print("-" * 20, "Input", "-" * 20)
|
||||
print("input length:", len(_input_ids[0]))
|
||||
print(text)
|
||||
print("-" * 20, "Output", "-" * 20)
|
||||
st = time.time()
|
||||
output = model.generate(
|
||||
_input_ids, max_new_tokens=args.n_predict, do_print=True
|
||||
_input_ids, max_new_tokens=args.n_predict, streamer=streamer
|
||||
)
|
||||
end = time.time()
|
||||
if args.disable_streaming:
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
||||
print(output_str)
|
||||
print(f"Inference time: {end-st} s")
|
||||
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
|
||||
print("-" * 20, "Input", "-" * 20)
|
||||
print(input_str)
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
||||
print("-" * 20, "Output", "-" * 20)
|
||||
print(output_str)
|
||||
|
||||
print("-" * 80)
|
||||
print("done")
|
||||
|
|
|
|||
|
|
@ -134,7 +134,6 @@ def generate(
|
|||
try:
|
||||
input_pipe = open(in_pipe_path, "wb")
|
||||
except:
|
||||
print('Waiting for input pipe')
|
||||
time.sleep(1)
|
||||
else:
|
||||
break
|
||||
|
|
@ -143,7 +142,6 @@ def generate(
|
|||
try:
|
||||
output_pipe = open(out_pipe_path, "rb")
|
||||
except:
|
||||
print('Waiting for output pipe')
|
||||
time.sleep(1)
|
||||
else:
|
||||
break
|
||||
|
|
@ -152,7 +150,7 @@ def generate(
|
|||
|
||||
bdata = str.encode(str(temp_dir))
|
||||
invalidInputError(len(bdata) <= 2000,
|
||||
f"Leng of input directory is too long ({len(bdata)}), "
|
||||
f"Length of input directory is too long ({len(bdata)}), "
|
||||
"which may cause read error.")
|
||||
input_pipe.write(bdata)
|
||||
input_pipe.flush()
|
||||
|
|
|
|||
Loading…
Reference in a new issue