LLM: add long-context support for Qwen1.5-7B/Baichuan2-7B/Mistral-7B. (#10937)
* LLM: add split tensor support for baichuan2-7b and qwen1.5-7b. * fix style. * fix style. * fix style. * add support for mistral and fix condition threshold. * fix style. * fix comments.
This commit is contained in:
		
							parent
							
								
									f9615f12d1
								
							
						
					
					
						commit
						cfed76b2ed
					
				
					 3 changed files with 376 additions and 101 deletions
				
			
		| 
						 | 
				
			
			@ -49,6 +49,21 @@ import os
 | 
			
		|||
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def should_split_qkv_tensor(query_states, bsz, num_heads, q_len, kv_seq_len, output_attentions):
 | 
			
		||||
    if not output_attentions:
 | 
			
		||||
        if os.environ.get("IPEX_LLM_SPLIT_QKV", None) is not None:
 | 
			
		||||
            return os.environ.get("IPEX_LLM_SPLIT_QKV", None) == "1"
 | 
			
		||||
        elif query_states.dtype == torch.float16 and \
 | 
			
		||||
                query_states.shape[2] >= 5400:
 | 
			
		||||
            # split tensor for memory block limitation
 | 
			
		||||
            # support fp16 and set input length threshold at 5400 for now
 | 
			
		||||
            return True
 | 
			
		||||
        elif query_states.element_size()*bsz*num_heads*q_len*kv_seq_len >= 4*1024**3:
 | 
			
		||||
            # attn_weight size larger than memory block limitation 4GB
 | 
			
		||||
            return True
 | 
			
		||||
    return False
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def baichuan_13b_rms_norm_forward(self, hidden_states):
 | 
			
		||||
    if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
 | 
			
		||||
        import linear_q4_0
 | 
			
		||||
| 
						 | 
				
			
			@ -159,13 +174,18 @@ def baichuan_attention_forward_7b_quantized(
 | 
			
		|||
    if query_states.size(2) != 1 or device.type != 'xpu':
 | 
			
		||||
        key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
			
		||||
                                                        query_states.dtype)
 | 
			
		||||
        attn_output = torch.matmul(query_states * scaling_factor, key_states.transpose(-2, -1))
 | 
			
		||||
        if should_split_qkv_tensor(query_states, bsz, self.num_heads,
 | 
			
		||||
                                   q_len, kv_seq_len, output_attentions):
 | 
			
		||||
            attn_output, attn_weights = native_sdp_split_qkv_tensor(query_states, key_states,
 | 
			
		||||
                                                                    value_states, attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = torch.matmul(query_states * scaling_factor, key_states.transpose(-2, -1))
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            attn_output += attention_mask
 | 
			
		||||
        attn_output = torch.softmax(attn_output, -1)
 | 
			
		||||
        attn_output = attn_output.to(hidden_states.dtype)
 | 
			
		||||
        attn_output = torch.matmul(attn_output, value_states)
 | 
			
		||||
            if attention_mask is not None:
 | 
			
		||||
                attn_output += attention_mask
 | 
			
		||||
            attn_output = torch.softmax(attn_output, -1)
 | 
			
		||||
            attn_output = attn_output.to(hidden_states.dtype)
 | 
			
		||||
            attn_output = torch.matmul(attn_output, value_states)
 | 
			
		||||
    else:
 | 
			
		||||
        import linear_q4_0
 | 
			
		||||
        attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
 | 
			
		||||
| 
						 | 
				
			
			@ -287,13 +307,20 @@ def baichuan_attention_forward_7b_origin(
 | 
			
		|||
            if attention_mask is not None:
 | 
			
		||||
                if attention_mask.dtype == torch.bool:
 | 
			
		||||
                    attention_mask.masked_fill_(attention_mask.logical_not(), float("-inf"))
 | 
			
		||||
 | 
			
		||||
            scaling_factor = 1 / math.sqrt(query_states.size(-1))
 | 
			
		||||
            attn_output = torch.matmul(query_states * scaling_factor, key_states.transpose(-2, -1))
 | 
			
		||||
            if attention_mask is not None:
 | 
			
		||||
                attn_output += attention_mask
 | 
			
		||||
            attn_output = torch.softmax(attn_output, -1)
 | 
			
		||||
            attn_output = torch.matmul(attn_output, value_states)
 | 
			
		||||
            if should_split_qkv_tensor(query_states, bsz, self.num_heads,
 | 
			
		||||
                                       q_len, kv_seq_len, output_attentions):
 | 
			
		||||
                attn_output, attn_weights = native_sdp_split_qkv_tensor(query_states,
 | 
			
		||||
                                                                        key_states,
 | 
			
		||||
                                                                        value_states,
 | 
			
		||||
                                                                        attention_mask)
 | 
			
		||||
            else:
 | 
			
		||||
                scaling_factor = 1 / math.sqrt(query_states.size(-1))
 | 
			
		||||
                attn_output = torch.matmul(query_states * scaling_factor,
 | 
			
		||||
                                           key_states.transpose(-2, -1))
 | 
			
		||||
                if attention_mask is not None:
 | 
			
		||||
                    attn_output += attention_mask
 | 
			
		||||
                attn_output = torch.softmax(attn_output, -1)
 | 
			
		||||
                attn_output = torch.matmul(attn_output, value_states)
 | 
			
		||||
 | 
			
		||||
        attn_output = attn_output.transpose(1, 2)
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
 | 
			
		||||
| 
						 | 
				
			
			@ -622,3 +649,21 @@ def baichuan_13b_get_alibi_mask(self, tensor, seq_length_with_past):
 | 
			
		|||
            : self.n_head, :seq_length_with_past, :seq_length_with_past
 | 
			
		||||
        ]
 | 
			
		||||
    return mask
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def native_sdp_split_qkv_tensor(query, key, value, attention_mask):
 | 
			
		||||
    block_size = 8
 | 
			
		||||
    query_split = torch.split(query, block_size, dim=1)
 | 
			
		||||
    key_split = torch.split(key.transpose(-2, -1), block_size, dim=1)
 | 
			
		||||
    value_split = torch.split(value, block_size, dim=1)
 | 
			
		||||
    attn_outputs = []
 | 
			
		||||
    scaling_factor = 1 / math.sqrt(query.size(-1))
 | 
			
		||||
    for q, k, v in zip(query_split, key_split, value_split):
 | 
			
		||||
        attn_output_split = torch.matmul(q * scaling_factor, k)
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            attn_output_split += attention_mask
 | 
			
		||||
        attn_output_split = torch.softmax(attn_output_split, -1)
 | 
			
		||||
        attn_output_split = torch.matmul(attn_output_split, v)
 | 
			
		||||
        attn_outputs.append(attn_output_split)
 | 
			
		||||
    attn_output = torch.cat(attn_outputs, dim=1)
 | 
			
		||||
    return attn_output, None
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -89,6 +89,21 @@ def should_use_fuse_rope(self, hidden_states, position_ids):
 | 
			
		|||
    return use_fuse_rope
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def should_split_qkv_tensor(query_states, bsz, num_heads, q_len, kv_seq_len, output_attentions):
 | 
			
		||||
    if not output_attentions:
 | 
			
		||||
        if os.environ.get("IPEX_LLM_SPLIT_QKV", None) is not None:
 | 
			
		||||
            return os.environ.get("IPEX_LLM_SPLIT_QKV", None) == "1"
 | 
			
		||||
        elif query_states.dtype == torch.float16 and \
 | 
			
		||||
                query_states.shape[2] >= 6300:
 | 
			
		||||
            # split tensor for memory block limitation
 | 
			
		||||
            # support fp16 and set input length threshold at 6300 for now
 | 
			
		||||
            return True
 | 
			
		||||
        elif query_states.element_size()*bsz*num_heads*q_len*kv_seq_len >= 4*1024**3:
 | 
			
		||||
            # attn_weight size larger than memory block limitation 4GB
 | 
			
		||||
            return True
 | 
			
		||||
    return False
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def compute_attn_outputs_weights(query_states, key_states, value_states, bsz, q_len, kv_seq_len,
 | 
			
		||||
                                 num_heads, head_dim, hidden_size, attention_mask):
 | 
			
		||||
    attn_weights = torch.matmul(
 | 
			
		||||
| 
						 | 
				
			
			@ -112,9 +127,14 @@ def compute_attn_outputs_weights(query_states, key_states, value_states, bsz, q_
 | 
			
		|||
 | 
			
		||||
        attn_weights = attn_weights + attention_mask
 | 
			
		||||
 | 
			
		||||
    # upcast attention to fp32
 | 
			
		||||
    attn_weights = nn.functional.\
 | 
			
		||||
        softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
    if kv_seq_len >= 2048 or bsz >= 64:
 | 
			
		||||
        # for memory considerations, do not upcast attention to fp32
 | 
			
		||||
        # for long sequences or large batches
 | 
			
		||||
        attn_weights = nn.functional.softmax(attn_weights, dim=-1)
 | 
			
		||||
    else:
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                             dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
    attn_output = torch.matmul(attn_weights, value_states.to(query_states.dtype))
 | 
			
		||||
 | 
			
		||||
    if attn_output.size() != (bsz, num_heads, q_len, head_dim):
 | 
			
		||||
| 
						 | 
				
			
			@ -130,6 +150,45 @@ def compute_attn_outputs_weights(query_states, key_states, value_states, bsz, q_
 | 
			
		|||
    return attn_output, attn_weights
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def compute_attn_outputs_weights_split_tensor(query_states, key_states, value_states,
 | 
			
		||||
                                              bsz, q_len, kv_seq_len, num_heads, head_dim,
 | 
			
		||||
                                              hidden_size, attention_mask):
 | 
			
		||||
    block_size = 8
 | 
			
		||||
    query_split = torch.split(query_states.to(key_states.dtype), block_size, dim=1)
 | 
			
		||||
    key_split = torch.split(key_states.transpose(2, 3), block_size, dim=1)
 | 
			
		||||
    value_split = torch.split(value_states.to(query_states.dtype), block_size, dim=1)
 | 
			
		||||
    attn_outputs = []
 | 
			
		||||
    for q, k, v in zip(query_split, key_split, value_split):
 | 
			
		||||
        attn_weights_split = torch.matmul(q, k) / math.sqrt(head_dim)
 | 
			
		||||
        block_actual_size = attn_weights_split.size(1)
 | 
			
		||||
        attn_weights_split_size = (bsz, block_actual_size, q_len, kv_seq_len)
 | 
			
		||||
        if attn_weights_split.size() != attn_weights_split_size:
 | 
			
		||||
            invalidInputError(False,
 | 
			
		||||
                              f"Splitted attention weights should be of size "
 | 
			
		||||
                              f"{attn_weights_split_size}, but is {attn_weights_split.size()}")
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            attn_mask_size = (bsz, 1, q_len, kv_seq_len)
 | 
			
		||||
            if attention_mask.size() != attn_mask_size:
 | 
			
		||||
                invalidInputError(False,
 | 
			
		||||
                                  f"Attention mask should be of size {attn_mask_size}, "
 | 
			
		||||
                                  f"but is {attention_mask.size()}")
 | 
			
		||||
            attn_weights_split = attn_weights_split + attention_mask
 | 
			
		||||
        attn_weights_split = nn.functional.softmax(attn_weights_split, dim=-1)
 | 
			
		||||
        attn_outputs.append(torch.matmul(attn_weights_split, v))
 | 
			
		||||
    attn_output = torch.cat(attn_outputs, dim=1)
 | 
			
		||||
    if attn_output.size() != (bsz, num_heads, q_len, head_dim):
 | 
			
		||||
        invalidInputError(
 | 
			
		||||
            False,
 | 
			
		||||
            f"`attn_output` should be of size {(bsz, num_heads, q_len, head_dim)},"
 | 
			
		||||
            f" but is {attn_output.size()}"
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, hidden_size)
 | 
			
		||||
    return attn_output, None
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def mistral_model_forward_4_36(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids: torch.LongTensor = None,
 | 
			
		||||
| 
						 | 
				
			
			@ -272,30 +331,58 @@ def mistral_attention_forward_quantized(
 | 
			
		|||
                                                                         dtype=attention_dtype)
 | 
			
		||||
    kv_seq_len = key_states.shape[-2]
 | 
			
		||||
    if past_key_value is None:
 | 
			
		||||
        attn_weights = torch.matmul(query_states.to(key_states.dtype),
 | 
			
		||||
                                    key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
        if should_split_qkv_tensor(query_states, bsz, self.num_heads,
 | 
			
		||||
                                   q_len, kv_seq_len, output_attentions):
 | 
			
		||||
            block_size = 8
 | 
			
		||||
            query_split = torch.split(query_states.to(key_states.dtype), block_size, dim=1)
 | 
			
		||||
            key_split = torch.split(key_states.transpose(2, 3), block_size, dim=1)
 | 
			
		||||
            value_split = torch.split(value_states.to(query_states.dtype), block_size, dim=1)
 | 
			
		||||
            attn_outputs = []
 | 
			
		||||
            for q, k, v in zip(query_split, key_split, value_split):
 | 
			
		||||
                attn_weights_split = torch.matmul(q, k) / math.sqrt(self.head_dim)
 | 
			
		||||
                block_actual_size = attn_weights_split.size(1)
 | 
			
		||||
                attn_weights_split_size = (bsz, block_actual_size, q_len, kv_seq_len)
 | 
			
		||||
                if attn_weights_split.size() != attn_weights_split_size:
 | 
			
		||||
                    invalidInputError(False,
 | 
			
		||||
                                      f"Splitted attention weights should be of size "
 | 
			
		||||
                                      f"{attn_weights_split_size}, "
 | 
			
		||||
                                      f"but is {attn_weights_split.size()}")
 | 
			
		||||
 | 
			
		||||
        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
 | 
			
		||||
            invalidInputError(
 | 
			
		||||
                False,
 | 
			
		||||
                f"Attention weights should be of size "
 | 
			
		||||
                f"{(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
 | 
			
		||||
                f" {attn_weights.size()}"
 | 
			
		||||
            )
 | 
			
		||||
                if attention_mask is not None:
 | 
			
		||||
                    attn_mask_size = (bsz, 1, q_len, kv_seq_len)
 | 
			
		||||
                    if attention_mask.size() != attn_mask_size:
 | 
			
		||||
                        invalidInputError(False,
 | 
			
		||||
                                          f"Attention mask should be of size {attn_mask_size}, "
 | 
			
		||||
                                          f"but is {attention_mask.size()}")
 | 
			
		||||
                    attn_weights_split = attn_weights_split + attention_mask
 | 
			
		||||
                attn_weights_split = nn.functional.softmax(attn_weights_split, dim=-1)
 | 
			
		||||
                attn_outputs.append(torch.matmul(attn_weights_split, v))
 | 
			
		||||
            attn_output = torch.cat(attn_outputs, dim=1)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_weights = torch.matmul(query_states.to(key_states.dtype),
 | 
			
		||||
                                        key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
 | 
			
		||||
            if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
 | 
			
		||||
                invalidInputError(
 | 
			
		||||
                    False,
 | 
			
		||||
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
 | 
			
		||||
                    f" but is {attention_mask.size()}"
 | 
			
		||||
                    f"Attention weights should be of size "
 | 
			
		||||
                    f"{(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
 | 
			
		||||
                    f" {attn_weights.size()}"
 | 
			
		||||
                )
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                             dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
            if attention_mask is not None:
 | 
			
		||||
                if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
 | 
			
		||||
                    invalidInputError(
 | 
			
		||||
                        False,
 | 
			
		||||
                        f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
 | 
			
		||||
                        f" but is {attention_mask.size()}"
 | 
			
		||||
                    )
 | 
			
		||||
                attn_weights = attn_weights + attention_mask
 | 
			
		||||
 | 
			
		||||
            # upcast attention to fp32
 | 
			
		||||
            attn_weights = nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                                 dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
            attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            k_cache, v_cache = init_fp8_kv_cache(
 | 
			
		||||
                bsz, self.num_heads, kv_seq_len, self.head_dim,
 | 
			
		||||
| 
						 | 
				
			
			@ -518,12 +605,29 @@ def mistral_attention_forward_original(
 | 
			
		|||
                                                                         dtype=attention_dtype)
 | 
			
		||||
        value_states = repeat_kv(value_states, self.num_key_value_groups).to(device,
 | 
			
		||||
                                                                             dtype=attention_dtype)
 | 
			
		||||
        attn_output, attn_weights = compute_attn_outputs_weights(query_states,
 | 
			
		||||
                                                                 key_states,
 | 
			
		||||
                                                                 value_states,
 | 
			
		||||
                                                                 bsz, q_len, kv_seq_len,
 | 
			
		||||
                                                                 self.num_heads, self.head_dim,
 | 
			
		||||
                                                                 self.hidden_size, attention_mask)
 | 
			
		||||
        if should_split_qkv_tensor(query_states, bsz, self.num_heads,
 | 
			
		||||
                                   q_len, kv_seq_len, output_attentions):
 | 
			
		||||
            attn_output, attn_weights = compute_attn_outputs_weights_split_tensor(query_states,
 | 
			
		||||
                                                                                  key_states,
 | 
			
		||||
                                                                                  value_states,
 | 
			
		||||
                                                                                  bsz,
 | 
			
		||||
                                                                                  q_len,
 | 
			
		||||
                                                                                  kv_seq_len,
 | 
			
		||||
                                                                                  self.num_heads,
 | 
			
		||||
                                                                                  self.head_dim,
 | 
			
		||||
                                                                                  self.hidden_size,
 | 
			
		||||
                                                                                  attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output, attn_weights = compute_attn_outputs_weights(query_states,
 | 
			
		||||
                                                                     key_states,
 | 
			
		||||
                                                                     value_states,
 | 
			
		||||
                                                                     bsz,
 | 
			
		||||
                                                                     q_len,
 | 
			
		||||
                                                                     kv_seq_len,
 | 
			
		||||
                                                                     self.num_heads,
 | 
			
		||||
                                                                     self.head_dim,
 | 
			
		||||
                                                                     self.hidden_size,
 | 
			
		||||
                                                                     attention_mask)
 | 
			
		||||
 | 
			
		||||
    attn_output = self.o_proj(attn_output)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -653,30 +757,63 @@ def mistral_attention_forward_4_36_quantized(
 | 
			
		|||
                                                                         dtype=attention_dtype)
 | 
			
		||||
    kv_seq_len = key_states.shape[-2]
 | 
			
		||||
    if len(past_key_value.key_cache) <= self.layer_idx:
 | 
			
		||||
        attn_weights = torch.matmul(query_states.to(key_states.dtype),
 | 
			
		||||
                                    key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
        if should_split_qkv_tensor(query_states, bsz, self.num_heads,
 | 
			
		||||
                                   q_len, kv_seq_len, output_attentions):
 | 
			
		||||
            block_size = 8
 | 
			
		||||
            query_split = torch.split(query_states.to(key_states.dtype), block_size, dim=1)
 | 
			
		||||
            key_split = torch.split(key_states.transpose(2, 3), block_size, dim=1)
 | 
			
		||||
            value_split = torch.split(value_states.to(query_states.dtype), block_size, dim=1)
 | 
			
		||||
            attn_outputs = []
 | 
			
		||||
            for q, k, v in zip(query_split, key_split, value_split):
 | 
			
		||||
                attn_weights_split = torch.matmul(q, k) / math.sqrt(self.head_dim)
 | 
			
		||||
                block_actual_size = attn_weights_split.size(1)
 | 
			
		||||
                attn_weights_split_size = (bsz, block_actual_size, q_len, kv_seq_len)
 | 
			
		||||
                if attn_weights_split.size() != attn_weights_split_size:
 | 
			
		||||
                    invalidInputError(False,
 | 
			
		||||
                                      f"Splitted attention weights should be of size "
 | 
			
		||||
                                      f"{attn_weights_split_size}, "
 | 
			
		||||
                                      f"but is {attn_weights_split.size()}")
 | 
			
		||||
 | 
			
		||||
        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
 | 
			
		||||
            invalidInputError(
 | 
			
		||||
                False,
 | 
			
		||||
                f"Attention weights should be of size "
 | 
			
		||||
                f"{(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
 | 
			
		||||
                f" {attn_weights.size()}"
 | 
			
		||||
            )
 | 
			
		||||
                if attention_mask is not None:
 | 
			
		||||
                    attn_mask_size = (bsz, 1, q_len, kv_seq_len)
 | 
			
		||||
                    if attention_mask.size() != attn_mask_size:
 | 
			
		||||
                        invalidInputError(False,
 | 
			
		||||
                                          f"Attention mask should be of size {attn_mask_size}, "
 | 
			
		||||
                                          f"but is {attention_mask.size()}")
 | 
			
		||||
                    attn_weights_split = attn_weights_split + attention_mask
 | 
			
		||||
                attn_weights_split = nn.functional.softmax(attn_weights_split, dim=-1)
 | 
			
		||||
                attn_outputs.append(torch.matmul(attn_weights_split, v))
 | 
			
		||||
            attn_output = torch.cat(attn_outputs, dim=1)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_weights = torch.matmul(query_states.to(key_states.dtype),
 | 
			
		||||
                                        key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
 | 
			
		||||
            if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
 | 
			
		||||
                invalidInputError(
 | 
			
		||||
                    False,
 | 
			
		||||
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
 | 
			
		||||
                    f" but is {attention_mask.size()}"
 | 
			
		||||
                    f"Attention weights should be of size "
 | 
			
		||||
                    f"{(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
 | 
			
		||||
                    f" {attn_weights.size()}"
 | 
			
		||||
                )
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                             dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
            if attention_mask is not None:
 | 
			
		||||
                if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
 | 
			
		||||
                    invalidInputError(
 | 
			
		||||
                        False,
 | 
			
		||||
                        f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
 | 
			
		||||
                        f" but is {attention_mask.size()}"
 | 
			
		||||
                    )
 | 
			
		||||
                attn_weights = attn_weights + attention_mask
 | 
			
		||||
 | 
			
		||||
            if kv_seq_len >= 2048 or bsz >= 64:
 | 
			
		||||
                # for memory considerations, do not upcast attention to fp32
 | 
			
		||||
                # for long sequences or large batches
 | 
			
		||||
                attn_weights = nn.functional.softmax(attn_weights, dim=-1)
 | 
			
		||||
            else:
 | 
			
		||||
                # upcast attention to fp32
 | 
			
		||||
                attn_weights = nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                                     dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
            attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            cache_kwargs = None
 | 
			
		||||
            key_states, value_states = past_key_value.update(key_states, value_states,
 | 
			
		||||
| 
						 | 
				
			
			@ -909,14 +1046,29 @@ def mistral_attention_forward_4_36_original(
 | 
			
		|||
                                                                         dtype=attention_dtype)
 | 
			
		||||
        value_states = repeat_kv(value_states, self.num_key_value_groups).to(device,
 | 
			
		||||
                                                                             dtype=attention_dtype)
 | 
			
		||||
        attn_output, attn_weights = compute_attn_outputs_weights(query_states,
 | 
			
		||||
                                                                 key_states,
 | 
			
		||||
                                                                 value_states,
 | 
			
		||||
                                                                 bsz, q_len, kv_seq_len,
 | 
			
		||||
                                                                 self.num_heads,
 | 
			
		||||
                                                                 self.head_dim,
 | 
			
		||||
                                                                 self.hidden_size,
 | 
			
		||||
                                                                 attention_mask)
 | 
			
		||||
        if should_split_qkv_tensor(query_states, bsz, self.num_heads,
 | 
			
		||||
                                   q_len, kv_seq_len, output_attentions):
 | 
			
		||||
            attn_output, attn_weights = compute_attn_outputs_weights_split_tensor(query_states,
 | 
			
		||||
                                                                                  key_states,
 | 
			
		||||
                                                                                  value_states,
 | 
			
		||||
                                                                                  bsz,
 | 
			
		||||
                                                                                  q_len,
 | 
			
		||||
                                                                                  kv_seq_len,
 | 
			
		||||
                                                                                  self.num_heads,
 | 
			
		||||
                                                                                  self.head_dim,
 | 
			
		||||
                                                                                  self.hidden_size,
 | 
			
		||||
                                                                                  attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output, attn_weights = compute_attn_outputs_weights(query_states,
 | 
			
		||||
                                                                     key_states,
 | 
			
		||||
                                                                     value_states,
 | 
			
		||||
                                                                     bsz,
 | 
			
		||||
                                                                     q_len,
 | 
			
		||||
                                                                     kv_seq_len,
 | 
			
		||||
                                                                     self.num_heads,
 | 
			
		||||
                                                                     self.head_dim,
 | 
			
		||||
                                                                     self.hidden_size,
 | 
			
		||||
                                                                     attention_mask)
 | 
			
		||||
 | 
			
		||||
    attn_output = self.o_proj(attn_output)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -74,6 +74,21 @@ import os
 | 
			
		|||
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def should_split_qkv_tensor(query_states, bsz, num_heads, q_len, kv_seq_len, output_attentions):
 | 
			
		||||
    if not output_attentions:
 | 
			
		||||
        if os.environ.get("IPEX_LLM_SPLIT_QKV", None) is not None:
 | 
			
		||||
            return os.environ.get("IPEX_LLM_SPLIT_QKV", None) == "1"
 | 
			
		||||
        elif query_states.dtype == torch.float16 and \
 | 
			
		||||
                query_states.shape[2] >= 5000:
 | 
			
		||||
            # split tensor for memory block limitation
 | 
			
		||||
            # support fp16 and set input length threshold at 5000 for now
 | 
			
		||||
            return True
 | 
			
		||||
        elif query_states.element_size()*bsz*num_heads*q_len*kv_seq_len >= 4*1024**3:
 | 
			
		||||
            # attn_weight size larger than memory block limitation 4GB
 | 
			
		||||
            return True
 | 
			
		||||
    return False
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def should_use_fuse_rope(self, query_states, position_ids):
 | 
			
		||||
    use_fuse_rope = query_states.device.type == "xpu"
 | 
			
		||||
    use_fuse_rope = use_fuse_rope and not (self.training and query_states.requires_grad)
 | 
			
		||||
| 
						 | 
				
			
			@ -370,28 +385,43 @@ def qwen2_attention_forward_quantized(
 | 
			
		|||
        key, value = restore_fp8_kv_cache(key_states, value_states, query_states.dtype)
 | 
			
		||||
        key = repeat_kv(key, self.num_key_value_groups)
 | 
			
		||||
        value = repeat_kv(value, self.num_key_value_groups)
 | 
			
		||||
        attn_weights = torch.matmul(query_states, key.transpose(2, 3))
 | 
			
		||||
        attn_weights = attn_weights / math.sqrt(self.head_dim)
 | 
			
		||||
        if should_split_qkv_tensor(query_states, bsz, self.num_heads,
 | 
			
		||||
                                   q_len, kv_seq_len, output_attentions):
 | 
			
		||||
            attn_output, attn_weights = native_sdp_split_qkv_tensor(query_states, key,
 | 
			
		||||
                                                                    value, attention_mask,
 | 
			
		||||
                                                                    bsz, q_len, kv_seq_len,
 | 
			
		||||
                                                                    self.head_dim, self.num_heads,
 | 
			
		||||
                                                                    self.attention_dropout,
 | 
			
		||||
                                                                    self.training)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_weights = torch.matmul(query_states, key.transpose(2, 3))
 | 
			
		||||
            attn_weights = attn_weights / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
 | 
			
		||||
                          ("Attention weights should be of size "
 | 
			
		||||
                           f"{(bsz, self.num_heads, q_len, kv_seq_len)},"
 | 
			
		||||
                           "but is {attn_weights.size()}"))
 | 
			
		||||
            invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
 | 
			
		||||
                              ("Attention weights should be of size "
 | 
			
		||||
                               f"{(bsz, self.num_heads, q_len, kv_seq_len)},"
 | 
			
		||||
                               "but is {attn_weights.size()}"))
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
 | 
			
		||||
                              (f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}"
 | 
			
		||||
                               f" but is {attention_mask.size()}"))
 | 
			
		||||
            if attention_mask is not None:
 | 
			
		||||
                invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
 | 
			
		||||
                                  (f"Attention mask should be of size "
 | 
			
		||||
                                   f"{(bsz, 1, q_len, kv_seq_len)},"
 | 
			
		||||
                                   f" but is {attention_mask.size()}"))
 | 
			
		||||
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
                attn_weights = attn_weights + attention_mask
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                             dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
        attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout,
 | 
			
		||||
                                             training=self.training)
 | 
			
		||||
            if kv_seq_len >= 2048 or bsz >= 64:
 | 
			
		||||
                # for memory considerations, do not upcast attention to fp32
 | 
			
		||||
                # for long sequences or large batches
 | 
			
		||||
                attn_weights = nn.functional.softmax(attn_weights, dim=-1)
 | 
			
		||||
            else:
 | 
			
		||||
                # upcast attention to fp32
 | 
			
		||||
                attn_weights = nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                                     dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
            attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout,
 | 
			
		||||
                                                 training=self.training)
 | 
			
		||||
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value)
 | 
			
		||||
            attn_output = torch.matmul(attn_weights, value)
 | 
			
		||||
 | 
			
		||||
    invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
 | 
			
		||||
                      "`attn_output` should be of size "
 | 
			
		||||
| 
						 | 
				
			
			@ -543,28 +573,43 @@ def qwen2_attention_forward_origin(
 | 
			
		|||
        attn_output = attn_output.view(query_states.shape)
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
    else:
 | 
			
		||||
        attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                    key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
        if should_split_qkv_tensor(query_states, bsz, self.num_heads,
 | 
			
		||||
                                   q_len, kv_seq_len, output_attentions):
 | 
			
		||||
            attn_output, attn_weights = native_sdp_split_qkv_tensor(query_states, key_states,
 | 
			
		||||
                                                                    value_states, attention_mask,
 | 
			
		||||
                                                                    bsz, q_len, kv_seq_len,
 | 
			
		||||
                                                                    self.head_dim, self.num_heads,
 | 
			
		||||
                                                                    self.attention_dropout,
 | 
			
		||||
                                                                    self.training)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                        key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
 | 
			
		||||
                          ("Attention weights should be of size "
 | 
			
		||||
                           f"{(bsz, self.num_heads, q_len, kv_seq_len)},"
 | 
			
		||||
                           "but is {attn_weights.size()}"))
 | 
			
		||||
            invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
 | 
			
		||||
                              ("Attention weights should be of size "
 | 
			
		||||
                               f"{(bsz, self.num_heads, q_len, kv_seq_len)},"
 | 
			
		||||
                               "but is {attn_weights.size()}"))
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
 | 
			
		||||
                              (f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}"
 | 
			
		||||
                               f" but is {attention_mask.size()}"))
 | 
			
		||||
            if attention_mask is not None:
 | 
			
		||||
                invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
 | 
			
		||||
                                  (f"Attention mask should be of size "
 | 
			
		||||
                                   f"{(bsz, 1, q_len, kv_seq_len)},"
 | 
			
		||||
                                   f" but is {attention_mask.size()}"))
 | 
			
		||||
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
                attn_weights = attn_weights + attention_mask
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = \
 | 
			
		||||
            nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
        attn_weights = nn.functional.dropout(attn_weights,
 | 
			
		||||
                                             p=self.attention_dropout,
 | 
			
		||||
                                             training=self.training)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
            if kv_seq_len >= 2048 or bsz >= 64:
 | 
			
		||||
                # for memory considerations, do not upcast attention to fp32
 | 
			
		||||
                # for long sequences or large batches
 | 
			
		||||
                attn_weights = nn.functional.softmax(attn_weights, dim=-1)
 | 
			
		||||
            else:
 | 
			
		||||
                # upcast attention to fp32
 | 
			
		||||
                attn_weights = nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                                     dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
            attn_weights = nn.functional.dropout(attn_weights,
 | 
			
		||||
                                                 p=self.attention_dropout,
 | 
			
		||||
                                                 training=self.training)
 | 
			
		||||
            attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
 | 
			
		||||
    invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
 | 
			
		||||
                      "`attn_output` should be of size "
 | 
			
		||||
| 
						 | 
				
			
			@ -725,3 +770,36 @@ def qwen2_sdpa_attention_forward(
 | 
			
		|||
    attn_output = self.o_proj(attn_output)
 | 
			
		||||
 | 
			
		||||
    return attn_output, None, past_key_value
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def native_sdp_split_qkv_tensor(query, key, value, attention_mask,
 | 
			
		||||
                                bsz, q_len, kv_seq_len, head_dim, num_heads,
 | 
			
		||||
                                attention_dropout, training):
 | 
			
		||||
    block_size = 8
 | 
			
		||||
    query_split = torch.split(query, block_size, dim=1)
 | 
			
		||||
    key_split = torch.split(key.transpose(2, 3), block_size, dim=1)
 | 
			
		||||
    value_split = torch.split(value, block_size, dim=1)
 | 
			
		||||
    attn_outputs = []
 | 
			
		||||
    for q, k, v in zip(query_split, key_split, value_split):
 | 
			
		||||
        attn_weights_split = torch.matmul(q, k) / math.sqrt(head_dim)
 | 
			
		||||
        block_actual_size = attn_weights_split.size(1)
 | 
			
		||||
        attn_weights_split_size = (bsz, block_actual_size, q_len, kv_seq_len)
 | 
			
		||||
        if attn_weights_split.size() != attn_weights_split_size:
 | 
			
		||||
            invalidInputError(False,
 | 
			
		||||
                              f"Splitted attention weights should be of size "
 | 
			
		||||
                              f"{attn_weights_split_size}, but is {attn_weights_split.size()}")
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            attn_mask_size = (bsz, 1, q_len, kv_seq_len)
 | 
			
		||||
            if attention_mask.size() != attn_mask_size:
 | 
			
		||||
                invalidInputError(False,
 | 
			
		||||
                                  f"Attention mask should be of size {attn_mask_size}, "
 | 
			
		||||
                                  f"but is {attention_mask.size()}")
 | 
			
		||||
            attn_weights_split = attn_weights_split + attention_mask
 | 
			
		||||
        attn_weights_split = nn.functional.softmax(attn_weights_split, dim=-1)
 | 
			
		||||
        attn_weights_split = nn.functional.dropout(attn_weights_split,
 | 
			
		||||
                                                   p=attention_dropout,
 | 
			
		||||
                                                   training=training)
 | 
			
		||||
        attn_outputs.append(torch.matmul(attn_weights_split, v))
 | 
			
		||||
    attn_output = torch.cat(attn_outputs, dim=1)
 | 
			
		||||
    return attn_output, None
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue