update tpch doc (#4979)

This commit is contained in:
Le-Zheng 2022-06-30 12:59:31 +08:00 committed by GitHub
parent 26ec59edf7
commit cef5359c54

View file

@ -2,42 +2,56 @@
### Prerequisites ###
- Hardware that supports SGX
- A fully configured Kubernetes cluster
- A fully configured Kubernetes cluster
- Intel SGX Device Plugin to use SGX in K8S cluster (install following instructions [here](https://bigdl.readthedocs.io/en/latest/doc/PPML/QuickStart/deploy_intel_sgx_device_plugin_for_kubernetes.html "here"))
### Prepare TPC-H kit and data ###
1. Download and compile tpc-h
```bash
git clone https://github.com/intel-analytics/zoo-tutorials.git
cd zoo-tutorials/tpch-spark
1. Generate data
sed -i 's/2.11.7/2.12.1/g' tpch.sbt
sed -i 's/2.4.0/3.1.2/g' tpch.sbt
sbt package
Go to [TPC Download](https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp) site, choose `TPC-H` source code, then download the TPC-H toolkits.
After you download the tpc-h tools zip and uncompressed the zip file. Go to `dbgen` directory, and create a makefile based on `makefile.suite`, and run `make`.
cd dbgen
make
This should generate an executable called `dbgen`
```
./dbgen -h
```
2. Generate data
Generate input data with size ~100GB (user can adjust data size to need):
```bash
./dbgen -s 100
gives you the various options for generating the tables. The simplest case is running:
```
./dbgen
```
which generates tables with extension `.tbl` with scale 1 (default) for a total of rougly 1GB size across all tables. For different size tables you can use the `-s` option:
```
./dbgen -s 10
```
will generate roughly 10GB of input data.
You can then either upload your data to remote file system or read them locally.
2. Encrypt Data
Encrypt data with specified Key Management Service (`SimpleKeyManagementService`, or `EHSMKeyManagementService` , or `AzureKeyManagementService`)
The example code of encrypt data with `SimpleKeyManagementService` is like below:
```
java -cp '/ppml/trusted-big-data-ml/work/bigdl-2.1.0-SNAPSHOT/lib/bigdl-ppml-spark_3.1.2-2.1.0-SNAPSHOT-jar-with-dependencies.jar:/ppml/trusted-big-data-ml/work/spark-3.1.2/conf/:/ppml/trusted-big-data-ml/work/spark-3.1.2/jars/* \
-Xmx10g \
com.intel.analytics.bigdl.ppml.examples.tpch.EncryptFiles \
--inputPath xxx/dbgen \
--outputPath xxx/dbgen-encrypted
```
### Deploy PPML TPC-H on Kubernetes ###
1. Pull docker image
```bash
```
sudo docker pull intelanalytics/bigdl-ppml-trusted-big-data-ml-python-graphene:2.1.0-SNAPSHOT
```
2. Prepare SGX keys (following instructions [here](https://github.com/intel-analytics/BigDL/tree/main/ppml/trusted-big-data-ml/python/docker-graphene#11-prepare-the-keyspassworddataenclave-keypem "here")), make sure keys and tpch-spark can be accessed on each K8S node
3. Start a bigdl-ppml enabled Spark K8S client container with configured local IP, key, tpch and kuberconfig path
```bash
export ENCLAVE_KEY=/YOUR_DIR/keys/enclave-key.pem
export DATA_PATH=/YOUR_DIR/zoo-tutorials/tpch-spark
export KEYS_PATH=/YOUR_DIR/keys
export SECURE_PASSWORD_PATH=/YOUR_DIR/password
export KUBERCONFIG_PATH=/YOUR_DIR/kuberconfig
```
export ENCLAVE_KEY=/root/keys/enclave-key.pem
export DATA_PATH=/root/zoo-tutorials/tpch-spark
export KEYS_PATH=/root/keys
export KUBERCONFIG_PATH=/root/kuberconfig
export LOCAL_IP=$local_ip
export DOCKER_IMAGE=intelanalytics/bigdl-ppml-trusted-big-data-ml-python-graphene:2.1.0-SNAPSHOT
sudo docker run -itd \
@ -51,7 +65,6 @@ sudo docker run -itd \
-v $ENCLAVE_KEY:/graphene/Pal/src/host/Linux-SGX/signer/enclave-key.pem \
-v $DATA_PATH:/ppml/trusted-big-data-ml/work/tpch-spark \
-v $KEYS_PATH:/ppml/trusted-big-data-ml/work/keys \
-v $SECURE_PASSWORD_PATH:/ppml/trusted-big-data-ml/work/password \
-v $KUBERCONFIG_PATH:/root/.kube/config \
-e RUNTIME_SPARK_MASTER=k8s://https://$LOCAL_IP:6443 \
-e RUNTIME_K8S_SERVICE_ACCOUNT=spark \
@ -101,17 +114,14 @@ spec:
path: /path/to/kuberconfig
```
6. Run PPML TPC-H
```bash
bash```
secure_password=`openssl rsautl -inkey /ppml/trusted-big-data-ml/work/password/key.txt -decrypt </ppml/trusted-big-data-ml/work/password/output.bin` && \
export TF_MKL_ALLOC_MAX_BYTES=10737418240 && \
export SPARK_LOCAL_IP=$LOCAL_IP && \
export HDFS_HOST=$hdfs_host_ip && \
export HDFS_PORT=$hdfs_port && \
export TPCH_DIR=/ppml/trusted-big-data-ml/work/tpch-spark \
export INPUT_DIR=$TPCH_DIR/dbgen \
export OUTPUT_DIR=hdfs://$HDFS_HOST:$HDFS_PORT/tpc-h/output \
export INPUT_DIR=xxx/dbgen \
export OUTPUT_DIR=xxx/output \
/opt/jdk8/bin/java \
-cp '$TPCH_DIR/target/scala-2.12/spark-tpc-h-queries_2.12-1.0.jar:$TPCH_DIR/dbgen/*:/ppml/trusted-big-data-ml/work/spark-3.1.2/conf/:/ppml/trusted-big-data-ml/work/spark-3.1.2/jars/*' \
-cp '/ppml/trusted-big-data-ml/work/bigdl-2.1.0-SNAPSHOT/lib/bigdl-ppml-spark_3.1.2-2.1.0-SNAPSHOT-jar-with-dependencies.jar:/ppml/trusted-big-data-ml/work/spark-3.1.2/conf/:/ppml/trusted-big-data-ml/work/spark-3.1.2/jars/*' \
-Xmx10g \
-Dbigdl.mklNumThreads=1 \
org.apache.spark.deploy.SparkSubmit \
@ -169,8 +179,13 @@ export OUTPUT_DIR=hdfs://$HDFS_HOST:$HDFS_PORT/tpc-h/output \
--conf spark.ssl.trustStore=/ppml/trusted-big-data-ml/work/keys/keystore.jks \
--conf spark.ssl.trustStorePassword=$secure_password \
--conf spark.ssl.trustStoreType=JKS \
--class main.scala.TpchQuery \
--conf spark.bigdl.kms.type=SimpleKeyManagementService \
--conf spark.bigdl.kms.simple.id=simpleAPPID \
--conf spark.bigdl.kms.simple.key=simpleAPPKEY \
--conf spark.bigdl.kms.key.primary=xxxx/primaryKey \
--conf spark.bigdl.kms.key.data=xxxx/dataKey \
--class com.intel.analytics.bigdl.ppml.examples.tpch.TpchQuery \
--verbose \
$TPCH_DIR/target/scala-2.12/spark-tpc-h-queries_2.12-1.0.jar \
$INPUT_DIR $OUTPUT_DIR
/ppml/trusted-big-data-ml/work/bigdl-2.1.0-SNAPSHOT/lib/bigdl-ppml-spark_3.1.2-2.1.0-SNAPSHOT-jar-with-dependencies.jar \
$INPUT_DIR $OUTPUT_DIR aes_cbc_pkcs5padding plain_text [QUERY]
```