Support directly quantizing huggingface transformers into 4bit format (#8371)

* Support directly quantizing huggingface transformers into 4bit format

* refine example

* license

* fix bias

* address comments

* move to ggml transformers

* fix example

* fix style

* fix style

* address comments

* rename

* change API

* fix style

* add lm head to conversion

* address comments
This commit is contained in:
Yang Wang 2023-06-25 01:35:06 -07:00 committed by GitHub
parent 03c5fb71a8
commit ce6d06eb0a
6 changed files with 446 additions and 0 deletions

View file

@ -0,0 +1,36 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import os
from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import LlamaTokenizer
if __name__ == '__main__':
model_path = 'decapoda-research/llama-7b-hf'
# load_in_4bit=True in bigdl.llm.transformers will convert
# the relevant layers in the model into int4 format
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True)
tokenizer = LlamaTokenizer.from_pretrained(model_path)
input_str = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
with torch.inference_mode():
input_ids = tokenizer.encode(input_str, return_tensors="pt")
output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(output_str)

View file

@ -953,6 +953,57 @@ def llama_print_system_info() -> bytes:
_lib.llama_print_system_info.argtypes = []
_lib.llama_print_system_info.restype = c_char_p
# GGML API
def ggml_quantize_q4_0(
src, # type: ctypes.Array[ctypes.c_float] # type: ignore
dst: ctypes.c_void_p,
n: ctypes.c_int,
k: ctypes.c_int,
hist, # type: ctypes.Array[ctypes.c_int64] # type: ignore
) -> int:
return _lib.ggml_quantize_q4_0(src, dst, n, k, hist)
_lib.ggml_quantize_q4_0.argtypes = [
ctypes.POINTER(ctypes.c_float),
ctypes.c_void_p,
ctypes.c_int,
ctypes.c_int,
ctypes.POINTER(ctypes.c_int64),
]
_lib.ggml_quantize_q4_0.restype = ctypes.c_size_t
def ggml_compute_forward_mul_mat_q_fp32(src_0_ne, # type: ctypes.Array[ctypes.c_int64]
src_0_data, # type: ctypes.c_void_p
src_1_ne, # type: ctypes.Array[ctypes.c_int64]
src_1_data, # type: ctypes.c_void_p
result, # type: ctypes.c_void_p
) -> None:
# ctx = ctx.context
# src_0_ne = (ctypes.c_int64 * 2)(*src_0_ne)
# src_0_data = ctypes.c_void_p(src_0_data)
# src_1_ne = (ctypes.c_int64 * 2)(*src_1_ne)
# src_1_data = ctypes.c_void_p(src_1_data)
# result = ctypes.c_void_p(result)
return _lib.ggml_compute_forward_mul_mat_q_fp32(src_0_ne,
src_0_data,
src_1_ne,
src_1_data,
result)
_lib.ggml_compute_forward_mul_mat_q_fp32.argtypes = [
ctypes.POINTER(ctypes.c_int64),
ctypes.c_void_p,
ctypes.POINTER(ctypes.c_int64),
ctypes.c_void_p,
ctypes.c_void_p
]
_lib.ggml_compute_forward_mul_mat_q_fp32.restype = None
###################################################################################################

View file

@ -0,0 +1,18 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from .convert import ggml_convert_int4
from .model import AutoModelForCausalLM, AutoModel

View file

@ -0,0 +1,96 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/huggingface/transformers/blob/v4.30.2/src/transformers/utils/bitsandbytes.py
# which is licensed under Apache License 2.0:
#
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
from accelerate import init_empty_weights
from bigdl.llm.transformers.linear_int4 import LinearInt4, ParamsInt4
import warnings
def _replace_with_int4_linear(model, modules_to_not_convert=None, current_key_name=None):
has_been_replaced = False
for name, module in model.named_children():
if current_key_name is None:
current_key_name = []
if isinstance(module, nn.Linear) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in ".".join(current_key_name) for key in modules_to_not_convert):
with init_empty_weights():
new_linear = LinearInt4(
module.in_features,
module.out_features,
module.bias is not None,
)
# Copy the weights
new_linear._parameters['weight'] = ParamsInt4(data=module.weight.data,
requires_grad=False,
quantized=False,
_shape=None).to("cpu")
if module.bias is not None:
new_linear._parameters['bias'] = nn.Parameter(module.bias.data).to("cpu")
model._modules[name] = new_linear
has_been_replaced = True
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(False)
# Remove the last key for recursion
if len(list(module.children())) > 0:
_, has_been_replaced = _replace_with_int4_linear(
module,
modules_to_not_convert,
current_key_name,
)
return model, has_been_replaced
def ggml_convert_int4(model):
modules_to_not_convert = [] # ["lm_head"]
model, has_been_replaced = _replace_with_int4_linear(
model, modules_to_not_convert, None
)
if not has_been_replaced:
warnings.warn(
"No linear modules were found in "
"your model. This can happen for some architectures such as gpt2 that uses Conv1D "
"instead of Linear layers. Please double check your model architecture, or submit "
"an issue on github if you think this is a bug."
)
return model

View file

@ -0,0 +1,200 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/TimDettmers/bitsandbytes/blob/0.39.1/bitsandbytes/nn/modules.py
# which is licensed under the MIT license:
#
# MIT License
#
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from typing import Optional, TypeVar, Union, overload
from bigdl.llm.utils.common import invalidInputError
import torch
import torch.nn.functional as F
from torch import Tensor, device, dtype, nn
T = TypeVar("T", bound="torch.nn.Module")
import bigdl.llm.ggml.model.llama.llama_cpp as ggml
import torch
import ctypes
QK = 64 # todo read this value from libllama.so
scale_size_in_bytes = 4
block_size_in_bytes = QK // 2 + scale_size_in_bytes
def ggml_convert_int4(tensor: torch.Tensor):
invalidInputError(tensor.dtype == torch.float,
"Input tensor must be float32")
src = tensor.data.data_ptr()
src = ctypes.cast(src, ctypes.POINTER(ctypes.c_float))
n = tensor.numel()
invalidInputError(n % QK == 0,
"Input tensor size must be multiple of 64")
k = tensor.shape[-1]
invalidInputError(k % QK == 0,
"Last dim of input tensor must be multiple of 64")
dst_size = (n // QK) * block_size_in_bytes
dst_tensor = torch.empty(dst_size, dtype=torch.uint8)
dst = ctypes.c_void_p(dst_tensor.data.data_ptr())
hist = (ctypes.c_int64 * 16)()
ggml.ggml_quantize_q4_0(src, dst, n, k, hist)
return dst_tensor
class ParamsInt4(torch.nn.Parameter):
def __new__(cls, data=None, requires_grad=True, old_data=None, quantized=False, _shape=None):
if data is None:
data = torch.empty(0)
self = torch.Tensor._make_subclass(cls, data, requires_grad)
self.data = data
self.quantized = quantized
self._shape = _shape
return self
def quantize(self, device):
if not self.quantized:
w = self.data.contiguous().float()
# self.old_data = self.data
w_4bit = ggml_convert_int4(w)
self.data = w_4bit
self.quantized = True
self._shape = w.shape
return self
def get_shape(self):
return self._shape
@overload
def to(self: T, device: Optional[Union[int, device]]=...,
dtype: Optional[Union[dtype, str]]=..., non_blocking: bool=...,) -> T:
...
@overload
def to(self: T, dtype: Union[dtype, str], non_blocking: bool=...) -> T:
...
@overload
def to(self: T, tensor: Tensor, non_blocking: bool=...) -> T:
...
def to(self, *args, **kwargs):
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
if (device is not None and device.type == "cpu" and self.data.device.type == "cpu"):
return self.quantize(device)
else:
new_param = ParamsInt4(super().to(device=device,
dtype=dtype,
non_blocking=non_blocking),
requires_grad=self.requires_grad,
quantized=self.quantized,
_shape=self._shape)
return new_param
def ggml_matmul_src1_x_src0_t(src0: torch.Tensor, src1: torch.Tensor, src0_shape: torch.Size):
if src1.dtype != torch.float32:
src1 = src1.float()
src0_ptr = src0.data_ptr() + (src0.storage_offset() * src0.element_size())
src1_ptr = src1.data_ptr() + (src1.storage_offset() * src1.element_size())
result_shape = (src1.shape[0], src0_shape[0])
result_t = torch.empty(result_shape, dtype=torch.float32)
result_ptr = result_t.data_ptr() + (result_t.storage_offset() * result_t.element_size())
src0_shape = tuple(reversed(src0_shape))
src1_shape = tuple(reversed(src1.shape))
# ctx_p = ctx.context
src_0_ne = (ctypes.c_int64 * 2)(*src0_shape)
src_0_data = ctypes.c_void_p(src0_ptr)
src_1_ne = (ctypes.c_int64 * 2)(*src1_shape)
src_1_data = ctypes.c_void_p(src1_ptr)
result_ptr = ctypes.c_void_p(result_ptr)
ggml.ggml_compute_forward_mul_mat_q_fp32(
# ctx=ctx_p,
src_0_ne=src_0_ne,
src_0_data=src_0_data,
src_1_ne=src_1_ne,
src_1_data=src_1_data,
result=result_ptr,
)
return result_t
class LinearInt4(nn.Linear):
def __init__(self, input_features, output_features, bias=True):
super().__init__(input_features, output_features, bias)
self.weight = ParamsInt4(self.weight.data, requires_grad=False,
old_data=self.weight.data,
quantized=False, _shape=None)
self.in_len = input_features
self.out_len = output_features
self.weight_shape = (self.out_len, self.in_len)
def forward(self, x: torch.Tensor):
# weights are cast automatically as Int8Params, but the bias has to be cast manually
if self.bias is not None and self.bias.dtype != x.dtype:
self.bias.data = self.bias.data.to(x.dtype)
x_shape = x.shape
x = x.view(-1, x_shape[-1])
x0 = self.weight.data
result = ggml_matmul_src1_x_src0_t(x0, x, self.weight_shape)
new_shape = x_shape[:-1] + (self.out_len,)
result = result.view(new_shape)
if self.bias is not None:
result += self.bias
return result

View file

@ -0,0 +1,45 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import transformers
import torch
class _BaseAutoModelClass:
HF_MODEL = None
@classmethod
def from_pretrained(cls,
*args,
**kwargs):
load_in_4bit = kwargs.pop("load_in_4bit", False)
model = cls.HF_Model.from_pretrained(*args, **kwargs)
if load_in_4bit:
from .convert import ggml_convert_int4
model = model.to("cpu", torch.float32)
model = ggml_convert_int4(model)
return model
class AutoModelForCausalLM(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForCausalLM
class AutoModel(_BaseAutoModelClass):
HF_Model = transformers.AutoModel