Support directly quantizing huggingface transformers into 4bit format (#8371)
* Support directly quantizing huggingface transformers into 4bit format * refine example * license * fix bias * address comments * move to ggml transformers * fix example * fix style * fix style * address comments * rename * change API * fix style * add lm head to conversion * address comments
This commit is contained in:
parent
03c5fb71a8
commit
ce6d06eb0a
6 changed files with 446 additions and 0 deletions
36
python/llm/example/transformers_int4.py
Normal file
36
python/llm/example/transformers_int4.py
Normal file
|
|
@ -0,0 +1,36 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import os
|
||||||
|
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||||
|
from transformers import LlamaTokenizer
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
model_path = 'decapoda-research/llama-7b-hf'
|
||||||
|
|
||||||
|
# load_in_4bit=True in bigdl.llm.transformers will convert
|
||||||
|
# the relevant layers in the model into int4 format
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True)
|
||||||
|
tokenizer = LlamaTokenizer.from_pretrained(model_path)
|
||||||
|
|
||||||
|
input_str = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
|
||||||
|
|
||||||
|
with torch.inference_mode():
|
||||||
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||||
|
output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
|
||||||
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||||
|
print(output_str)
|
||||||
|
|
@ -953,6 +953,57 @@ def llama_print_system_info() -> bytes:
|
||||||
_lib.llama_print_system_info.argtypes = []
|
_lib.llama_print_system_info.argtypes = []
|
||||||
_lib.llama_print_system_info.restype = c_char_p
|
_lib.llama_print_system_info.restype = c_char_p
|
||||||
|
|
||||||
|
|
||||||
|
# GGML API
|
||||||
|
def ggml_quantize_q4_0(
|
||||||
|
src, # type: ctypes.Array[ctypes.c_float] # type: ignore
|
||||||
|
dst: ctypes.c_void_p,
|
||||||
|
n: ctypes.c_int,
|
||||||
|
k: ctypes.c_int,
|
||||||
|
hist, # type: ctypes.Array[ctypes.c_int64] # type: ignore
|
||||||
|
) -> int:
|
||||||
|
return _lib.ggml_quantize_q4_0(src, dst, n, k, hist)
|
||||||
|
|
||||||
|
|
||||||
|
_lib.ggml_quantize_q4_0.argtypes = [
|
||||||
|
ctypes.POINTER(ctypes.c_float),
|
||||||
|
ctypes.c_void_p,
|
||||||
|
ctypes.c_int,
|
||||||
|
ctypes.c_int,
|
||||||
|
ctypes.POINTER(ctypes.c_int64),
|
||||||
|
]
|
||||||
|
_lib.ggml_quantize_q4_0.restype = ctypes.c_size_t
|
||||||
|
|
||||||
|
|
||||||
|
def ggml_compute_forward_mul_mat_q_fp32(src_0_ne, # type: ctypes.Array[ctypes.c_int64]
|
||||||
|
src_0_data, # type: ctypes.c_void_p
|
||||||
|
src_1_ne, # type: ctypes.Array[ctypes.c_int64]
|
||||||
|
src_1_data, # type: ctypes.c_void_p
|
||||||
|
result, # type: ctypes.c_void_p
|
||||||
|
) -> None:
|
||||||
|
|
||||||
|
# ctx = ctx.context
|
||||||
|
# src_0_ne = (ctypes.c_int64 * 2)(*src_0_ne)
|
||||||
|
# src_0_data = ctypes.c_void_p(src_0_data)
|
||||||
|
# src_1_ne = (ctypes.c_int64 * 2)(*src_1_ne)
|
||||||
|
# src_1_data = ctypes.c_void_p(src_1_data)
|
||||||
|
# result = ctypes.c_void_p(result)
|
||||||
|
|
||||||
|
return _lib.ggml_compute_forward_mul_mat_q_fp32(src_0_ne,
|
||||||
|
src_0_data,
|
||||||
|
src_1_ne,
|
||||||
|
src_1_data,
|
||||||
|
result)
|
||||||
|
|
||||||
|
|
||||||
|
_lib.ggml_compute_forward_mul_mat_q_fp32.argtypes = [
|
||||||
|
ctypes.POINTER(ctypes.c_int64),
|
||||||
|
ctypes.c_void_p,
|
||||||
|
ctypes.POINTER(ctypes.c_int64),
|
||||||
|
ctypes.c_void_p,
|
||||||
|
ctypes.c_void_p
|
||||||
|
]
|
||||||
|
_lib.ggml_compute_forward_mul_mat_q_fp32.restype = None
|
||||||
###################################################################################################
|
###################################################################################################
|
||||||
|
|
||||||
|
|
||||||
|
|
|
||||||
18
python/llm/src/bigdl/llm/transformers/__init__.py
Normal file
18
python/llm/src/bigdl/llm/transformers/__init__.py
Normal file
|
|
@ -0,0 +1,18 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
from .convert import ggml_convert_int4
|
||||||
|
from .model import AutoModelForCausalLM, AutoModel
|
||||||
96
python/llm/src/bigdl/llm/transformers/convert.py
Normal file
96
python/llm/src/bigdl/llm/transformers/convert.py
Normal file
|
|
@ -0,0 +1,96 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
|
||||||
|
# Some parts of this file is adapted from
|
||||||
|
# https://github.com/huggingface/transformers/blob/v4.30.2/src/transformers/utils/bitsandbytes.py
|
||||||
|
# which is licensed under Apache License 2.0:
|
||||||
|
#
|
||||||
|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from accelerate import init_empty_weights
|
||||||
|
from bigdl.llm.transformers.linear_int4 import LinearInt4, ParamsInt4
|
||||||
|
import warnings
|
||||||
|
|
||||||
|
|
||||||
|
def _replace_with_int4_linear(model, modules_to_not_convert=None, current_key_name=None):
|
||||||
|
has_been_replaced = False
|
||||||
|
for name, module in model.named_children():
|
||||||
|
if current_key_name is None:
|
||||||
|
current_key_name = []
|
||||||
|
|
||||||
|
if isinstance(module, nn.Linear) and name not in modules_to_not_convert:
|
||||||
|
# Check if the current key is not in the `modules_to_not_convert`
|
||||||
|
if not any(key in ".".join(current_key_name) for key in modules_to_not_convert):
|
||||||
|
with init_empty_weights():
|
||||||
|
|
||||||
|
new_linear = LinearInt4(
|
||||||
|
module.in_features,
|
||||||
|
module.out_features,
|
||||||
|
module.bias is not None,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Copy the weights
|
||||||
|
new_linear._parameters['weight'] = ParamsInt4(data=module.weight.data,
|
||||||
|
requires_grad=False,
|
||||||
|
quantized=False,
|
||||||
|
_shape=None).to("cpu")
|
||||||
|
if module.bias is not None:
|
||||||
|
new_linear._parameters['bias'] = nn.Parameter(module.bias.data).to("cpu")
|
||||||
|
|
||||||
|
model._modules[name] = new_linear
|
||||||
|
has_been_replaced = True
|
||||||
|
# Force requires grad to False to avoid unexpected errors
|
||||||
|
model._modules[name].requires_grad_(False)
|
||||||
|
|
||||||
|
# Remove the last key for recursion
|
||||||
|
if len(list(module.children())) > 0:
|
||||||
|
_, has_been_replaced = _replace_with_int4_linear(
|
||||||
|
module,
|
||||||
|
modules_to_not_convert,
|
||||||
|
current_key_name,
|
||||||
|
)
|
||||||
|
return model, has_been_replaced
|
||||||
|
|
||||||
|
|
||||||
|
def ggml_convert_int4(model):
|
||||||
|
modules_to_not_convert = [] # ["lm_head"]
|
||||||
|
model, has_been_replaced = _replace_with_int4_linear(
|
||||||
|
model, modules_to_not_convert, None
|
||||||
|
)
|
||||||
|
if not has_been_replaced:
|
||||||
|
warnings.warn(
|
||||||
|
"No linear modules were found in "
|
||||||
|
"your model. This can happen for some architectures such as gpt2 that uses Conv1D "
|
||||||
|
"instead of Linear layers. Please double check your model architecture, or submit "
|
||||||
|
"an issue on github if you think this is a bug."
|
||||||
|
)
|
||||||
|
return model
|
||||||
200
python/llm/src/bigdl/llm/transformers/linear_int4.py
Normal file
200
python/llm/src/bigdl/llm/transformers/linear_int4.py
Normal file
|
|
@ -0,0 +1,200 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
# Some parts of this file is adapted from
|
||||||
|
# https://github.com/TimDettmers/bitsandbytes/blob/0.39.1/bitsandbytes/nn/modules.py
|
||||||
|
# which is licensed under the MIT license:
|
||||||
|
#
|
||||||
|
# MIT License
|
||||||
|
#
|
||||||
|
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||||
|
#
|
||||||
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
# of this software and associated documentation files (the "Software"), to deal
|
||||||
|
# in the Software without restriction, including without limitation the rights
|
||||||
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
# copies of the Software, and to permit persons to whom the Software is
|
||||||
|
# furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
# The above copyright notice and this permission notice shall be included in all
|
||||||
|
# copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
# SOFTWARE.
|
||||||
|
|
||||||
|
|
||||||
|
from typing import Optional, TypeVar, Union, overload
|
||||||
|
from bigdl.llm.utils.common import invalidInputError
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torch import Tensor, device, dtype, nn
|
||||||
|
|
||||||
|
T = TypeVar("T", bound="torch.nn.Module")
|
||||||
|
|
||||||
|
import bigdl.llm.ggml.model.llama.llama_cpp as ggml
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import ctypes
|
||||||
|
|
||||||
|
QK = 64 # todo read this value from libllama.so
|
||||||
|
scale_size_in_bytes = 4
|
||||||
|
block_size_in_bytes = QK // 2 + scale_size_in_bytes
|
||||||
|
|
||||||
|
|
||||||
|
def ggml_convert_int4(tensor: torch.Tensor):
|
||||||
|
|
||||||
|
invalidInputError(tensor.dtype == torch.float,
|
||||||
|
"Input tensor must be float32")
|
||||||
|
src = tensor.data.data_ptr()
|
||||||
|
src = ctypes.cast(src, ctypes.POINTER(ctypes.c_float))
|
||||||
|
n = tensor.numel()
|
||||||
|
invalidInputError(n % QK == 0,
|
||||||
|
"Input tensor size must be multiple of 64")
|
||||||
|
k = tensor.shape[-1]
|
||||||
|
invalidInputError(k % QK == 0,
|
||||||
|
"Last dim of input tensor must be multiple of 64")
|
||||||
|
|
||||||
|
dst_size = (n // QK) * block_size_in_bytes
|
||||||
|
dst_tensor = torch.empty(dst_size, dtype=torch.uint8)
|
||||||
|
dst = ctypes.c_void_p(dst_tensor.data.data_ptr())
|
||||||
|
|
||||||
|
hist = (ctypes.c_int64 * 16)()
|
||||||
|
|
||||||
|
ggml.ggml_quantize_q4_0(src, dst, n, k, hist)
|
||||||
|
return dst_tensor
|
||||||
|
|
||||||
|
|
||||||
|
class ParamsInt4(torch.nn.Parameter):
|
||||||
|
def __new__(cls, data=None, requires_grad=True, old_data=None, quantized=False, _shape=None):
|
||||||
|
if data is None:
|
||||||
|
data = torch.empty(0)
|
||||||
|
|
||||||
|
self = torch.Tensor._make_subclass(cls, data, requires_grad)
|
||||||
|
self.data = data
|
||||||
|
self.quantized = quantized
|
||||||
|
self._shape = _shape
|
||||||
|
return self
|
||||||
|
|
||||||
|
def quantize(self, device):
|
||||||
|
if not self.quantized:
|
||||||
|
w = self.data.contiguous().float()
|
||||||
|
# self.old_data = self.data
|
||||||
|
w_4bit = ggml_convert_int4(w)
|
||||||
|
self.data = w_4bit
|
||||||
|
self.quantized = True
|
||||||
|
self._shape = w.shape
|
||||||
|
return self
|
||||||
|
|
||||||
|
def get_shape(self):
|
||||||
|
return self._shape
|
||||||
|
|
||||||
|
@overload
|
||||||
|
def to(self: T, device: Optional[Union[int, device]]=...,
|
||||||
|
dtype: Optional[Union[dtype, str]]=..., non_blocking: bool=...,) -> T:
|
||||||
|
...
|
||||||
|
|
||||||
|
@overload
|
||||||
|
def to(self: T, dtype: Union[dtype, str], non_blocking: bool=...) -> T:
|
||||||
|
...
|
||||||
|
|
||||||
|
@overload
|
||||||
|
def to(self: T, tensor: Tensor, non_blocking: bool=...) -> T:
|
||||||
|
...
|
||||||
|
|
||||||
|
def to(self, *args, **kwargs):
|
||||||
|
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
|
||||||
|
|
||||||
|
if (device is not None and device.type == "cpu" and self.data.device.type == "cpu"):
|
||||||
|
return self.quantize(device)
|
||||||
|
else:
|
||||||
|
new_param = ParamsInt4(super().to(device=device,
|
||||||
|
dtype=dtype,
|
||||||
|
non_blocking=non_blocking),
|
||||||
|
requires_grad=self.requires_grad,
|
||||||
|
quantized=self.quantized,
|
||||||
|
_shape=self._shape)
|
||||||
|
|
||||||
|
return new_param
|
||||||
|
|
||||||
|
|
||||||
|
def ggml_matmul_src1_x_src0_t(src0: torch.Tensor, src1: torch.Tensor, src0_shape: torch.Size):
|
||||||
|
if src1.dtype != torch.float32:
|
||||||
|
src1 = src1.float()
|
||||||
|
|
||||||
|
src0_ptr = src0.data_ptr() + (src0.storage_offset() * src0.element_size())
|
||||||
|
src1_ptr = src1.data_ptr() + (src1.storage_offset() * src1.element_size())
|
||||||
|
|
||||||
|
result_shape = (src1.shape[0], src0_shape[0])
|
||||||
|
|
||||||
|
result_t = torch.empty(result_shape, dtype=torch.float32)
|
||||||
|
result_ptr = result_t.data_ptr() + (result_t.storage_offset() * result_t.element_size())
|
||||||
|
|
||||||
|
src0_shape = tuple(reversed(src0_shape))
|
||||||
|
src1_shape = tuple(reversed(src1.shape))
|
||||||
|
|
||||||
|
# ctx_p = ctx.context
|
||||||
|
src_0_ne = (ctypes.c_int64 * 2)(*src0_shape)
|
||||||
|
src_0_data = ctypes.c_void_p(src0_ptr)
|
||||||
|
src_1_ne = (ctypes.c_int64 * 2)(*src1_shape)
|
||||||
|
src_1_data = ctypes.c_void_p(src1_ptr)
|
||||||
|
result_ptr = ctypes.c_void_p(result_ptr)
|
||||||
|
|
||||||
|
ggml.ggml_compute_forward_mul_mat_q_fp32(
|
||||||
|
# ctx=ctx_p,
|
||||||
|
src_0_ne=src_0_ne,
|
||||||
|
src_0_data=src_0_data,
|
||||||
|
src_1_ne=src_1_ne,
|
||||||
|
src_1_data=src_1_data,
|
||||||
|
result=result_ptr,
|
||||||
|
)
|
||||||
|
|
||||||
|
return result_t
|
||||||
|
|
||||||
|
|
||||||
|
class LinearInt4(nn.Linear):
|
||||||
|
def __init__(self, input_features, output_features, bias=True):
|
||||||
|
super().__init__(input_features, output_features, bias)
|
||||||
|
self.weight = ParamsInt4(self.weight.data, requires_grad=False,
|
||||||
|
old_data=self.weight.data,
|
||||||
|
quantized=False, _shape=None)
|
||||||
|
self.in_len = input_features
|
||||||
|
self.out_len = output_features
|
||||||
|
self.weight_shape = (self.out_len, self.in_len)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor):
|
||||||
|
# weights are cast automatically as Int8Params, but the bias has to be cast manually
|
||||||
|
if self.bias is not None and self.bias.dtype != x.dtype:
|
||||||
|
self.bias.data = self.bias.data.to(x.dtype)
|
||||||
|
|
||||||
|
x_shape = x.shape
|
||||||
|
x = x.view(-1, x_shape[-1])
|
||||||
|
|
||||||
|
x0 = self.weight.data
|
||||||
|
|
||||||
|
result = ggml_matmul_src1_x_src0_t(x0, x, self.weight_shape)
|
||||||
|
new_shape = x_shape[:-1] + (self.out_len,)
|
||||||
|
result = result.view(new_shape)
|
||||||
|
|
||||||
|
if self.bias is not None:
|
||||||
|
result += self.bias
|
||||||
|
|
||||||
|
return result
|
||||||
45
python/llm/src/bigdl/llm/transformers/model.py
Normal file
45
python/llm/src/bigdl/llm/transformers/model.py
Normal file
|
|
@ -0,0 +1,45 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import transformers
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
class _BaseAutoModelClass:
|
||||||
|
|
||||||
|
HF_MODEL = None
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_pretrained(cls,
|
||||||
|
*args,
|
||||||
|
**kwargs):
|
||||||
|
load_in_4bit = kwargs.pop("load_in_4bit", False)
|
||||||
|
model = cls.HF_Model.from_pretrained(*args, **kwargs)
|
||||||
|
|
||||||
|
if load_in_4bit:
|
||||||
|
from .convert import ggml_convert_int4
|
||||||
|
model = model.to("cpu", torch.float32)
|
||||||
|
model = ggml_convert_int4(model)
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
class AutoModelForCausalLM(_BaseAutoModelClass):
|
||||||
|
HF_Model = transformers.AutoModelForCausalLM
|
||||||
|
|
||||||
|
|
||||||
|
class AutoModel(_BaseAutoModelClass):
|
||||||
|
HF_Model = transformers.AutoModel
|
||||||
Loading…
Reference in a new issue