Transformer int4 add qtype, support q4_1 q5_0 q5_1 q8_0 (#8481)
* quant in Q4 5 8 * meet code review * update readme * style * update * fix error * fix error * update * fix style * update * Update README.md * Add load_in_low_bit
This commit is contained in:
parent
db39d0a6b3
commit
cd7a980ec4
8 changed files with 120 additions and 51 deletions
|
|
@ -102,6 +102,11 @@ You may run the models using `transformers`-style API in `bigdl-llm`.
|
|||
|
||||
See the complete example [here](example/transformers/transformers_int4/transformers_int4_pipeline.py).
|
||||
|
||||
Notice: For more quantized precision, you can use another parameter `load_in_low_bit`. `q4_0` and `q4_1` are INT4 quantization, `q5_0` and `q5_1` are INT5 quantization, `q8_0` is INT8 quantization. Like:
|
||||
```python
|
||||
model = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_low_bit="q5_0")
|
||||
```
|
||||
|
||||
- ##### Using native INT4 format
|
||||
|
||||
You may also convert Hugging Face *Transformers* models into native INT4 format for maximum performance as follows.
|
||||
|
|
|
|||
|
|
@ -955,28 +955,49 @@ _lib.llama_print_system_info.restype = c_char_p
|
|||
|
||||
|
||||
# GGML API
|
||||
def ggml_quantize_q4_0(
|
||||
def ggml_quantize_tensor(
|
||||
src, # type: ctypes.Array[ctypes.c_float] # type: ignore
|
||||
dst: ctypes.c_void_p,
|
||||
qtype: ctypes.c_int,
|
||||
n: ctypes.c_int,
|
||||
k: ctypes.c_int,
|
||||
hist, # type: ctypes.Array[ctypes.c_int64] # type: ignore
|
||||
) -> int:
|
||||
return _lib.ggml_quantize_q4_0(src, dst, n, k, hist)
|
||||
return _lib.ggml_quantize_tensor(src, dst, qtype, n, k, hist)
|
||||
|
||||
|
||||
_lib.ggml_quantize_q4_0.argtypes = [
|
||||
_lib.ggml_quantize_tensor.argtypes = [
|
||||
ctypes.POINTER(ctypes.c_float),
|
||||
ctypes.c_void_p,
|
||||
ctypes.c_int,
|
||||
ctypes.c_int,
|
||||
ctypes.c_int,
|
||||
ctypes.POINTER(ctypes.c_int64),
|
||||
]
|
||||
_lib.ggml_quantize_q4_0.restype = ctypes.c_size_t
|
||||
_lib.ggml_quantize_tensor.restype = ctypes.c_size_t
|
||||
|
||||
|
||||
def ggml_type_size(qtype: ctypes.c_int) -> int:
|
||||
return _lib.ggml_type_size(qtype)
|
||||
|
||||
_lib.ggml_type_size.argtypes = [
|
||||
ctypes.c_int,
|
||||
]
|
||||
_lib.ggml_type_size.restype = ctypes.c_int
|
||||
|
||||
|
||||
def ggml_qk_size(qtype: ctypes.c_int) -> int:
|
||||
return _lib.ggml_qk_size(qtype)
|
||||
|
||||
_lib.ggml_qk_size.argtypes = [
|
||||
ctypes.c_int,
|
||||
]
|
||||
_lib.ggml_qk_size.restype = ctypes.c_int
|
||||
|
||||
|
||||
def ggml_compute_forward_mul_mat_q_fp32(src_0_ne, # type: ctypes.Array[ctypes.c_int64]
|
||||
src_0_data, # type: ctypes.c_void_p
|
||||
src_0_qtype, # type: int
|
||||
src_1_ne, # type: ctypes.Array[ctypes.c_int64]
|
||||
src_1_data, # type: ctypes.c_void_p
|
||||
result, # type: ctypes.c_void_p
|
||||
|
|
@ -991,6 +1012,7 @@ def ggml_compute_forward_mul_mat_q_fp32(src_0_ne, # type: ctypes.Array[ctypes.c
|
|||
|
||||
return _lib.ggml_compute_forward_mul_mat_q_fp32(src_0_ne,
|
||||
src_0_data,
|
||||
src_0_qtype,
|
||||
src_1_ne,
|
||||
src_1_data,
|
||||
result)
|
||||
|
|
@ -999,6 +1021,7 @@ def ggml_compute_forward_mul_mat_q_fp32(src_0_ne, # type: ctypes.Array[ctypes.c
|
|||
_lib.ggml_compute_forward_mul_mat_q_fp32.argtypes = [
|
||||
ctypes.POINTER(ctypes.c_int64),
|
||||
ctypes.c_void_p,
|
||||
ctypes.c_int,
|
||||
ctypes.POINTER(ctypes.c_int64),
|
||||
ctypes.c_void_p,
|
||||
ctypes.c_void_p
|
||||
|
|
|
|||
|
|
@ -24,6 +24,13 @@ from pathlib import Path
|
|||
dirname, _ = os.path.split(os.path.abspath(__file__))
|
||||
libs_dirname = os.path.dirname(dirname)
|
||||
|
||||
# ggml quantized tensor type, this is different from below file quantized type(_quantize_type)
|
||||
ggml_tensor_qtype = {"q4_0": 2,
|
||||
"q4_1": 3,
|
||||
"q5_0": 6,
|
||||
"q5_1": 7,
|
||||
"q8_0": 8}
|
||||
|
||||
_llama_quantize_type = {"q4_0": 2,
|
||||
"q4_1": 3,
|
||||
"q5_0": 8,
|
||||
|
|
|
|||
|
|
@ -14,6 +14,6 @@
|
|||
# limitations under the License.
|
||||
#
|
||||
|
||||
from .convert import ggml_convert_int4
|
||||
from .convert import ggml_convert_quant
|
||||
from .model import AutoModelForCausalLM, AutoModel
|
||||
from .modelling_bigdl import BigdlNativeForCausalLM
|
||||
|
|
|
|||
|
|
@ -37,11 +37,11 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
from accelerate import init_empty_weights
|
||||
from bigdl.llm.transformers.linear_int4 import LinearInt4, ParamsInt4
|
||||
from bigdl.llm.transformers.linear_quant import LinearQuant, ParamsQuant
|
||||
import warnings
|
||||
|
||||
|
||||
def _replace_with_int4_linear(model, modules_to_not_convert=None,
|
||||
def _replace_with_quant_linear(model, qtype, modules_to_not_convert=None,
|
||||
current_key_name=None, convert_shape_only=False):
|
||||
has_been_replaced = False
|
||||
for name, module in model.named_children():
|
||||
|
|
@ -53,19 +53,22 @@ def _replace_with_int4_linear(model, modules_to_not_convert=None,
|
|||
if not any(key in ".".join(current_key_name) for key in modules_to_not_convert):
|
||||
with init_empty_weights():
|
||||
|
||||
new_linear = LinearInt4(
|
||||
new_linear = LinearQuant(
|
||||
module.in_features,
|
||||
module.out_features,
|
||||
qtype,
|
||||
module.bias is not None,
|
||||
)
|
||||
|
||||
# Copy the weights
|
||||
paramsint4 = ParamsInt4(data=module.weight.data,
|
||||
paramsQuant = ParamsQuant(data=module.weight.data,
|
||||
requires_grad=False,
|
||||
quantized=False,
|
||||
convert_shape_only=convert_shape_only,
|
||||
_shape=None).to("cpu")
|
||||
new_linear._parameters['weight'] = paramsint4
|
||||
_shape=None,
|
||||
qtype=qtype).to("cpu")
|
||||
new_linear._parameters['weight'] = paramsQuant
|
||||
|
||||
if module.bias is not None:
|
||||
new_linear._parameters['bias'] = nn.Parameter(module.bias.data).to("cpu")
|
||||
|
||||
|
|
@ -78,18 +81,19 @@ def _replace_with_int4_linear(model, modules_to_not_convert=None,
|
|||
|
||||
# Remove the last key for recursion
|
||||
if len(list(module.children())) > 0:
|
||||
_, has_been_replaced = _replace_with_int4_linear(
|
||||
_, has_been_replaced = _replace_with_quant_linear(
|
||||
module,
|
||||
qtype,
|
||||
modules_to_not_convert,
|
||||
current_key_name,
|
||||
)
|
||||
return model, has_been_replaced
|
||||
|
||||
|
||||
def ggml_convert_int4(model, convert_shape_only=False):
|
||||
def ggml_convert_quant(model, qtype, convert_shape_only=False):
|
||||
modules_to_not_convert = [] # ["lm_head"]
|
||||
model, has_been_replaced = _replace_with_int4_linear(
|
||||
model, modules_to_not_convert, None, convert_shape_only=convert_shape_only
|
||||
model, has_been_replaced = _replace_with_quant_linear(
|
||||
model, qtype, modules_to_not_convert, None, convert_shape_only=convert_shape_only
|
||||
)
|
||||
if not has_been_replaced:
|
||||
warnings.warn(
|
||||
|
|
|
|||
|
|
@ -55,12 +55,10 @@ import bigdl.llm.ggml.model.llama.llama_cpp as ggml
|
|||
import torch
|
||||
import ctypes
|
||||
|
||||
QK = 64 # todo read this value from libllama.so
|
||||
scale_size_in_bytes = 4
|
||||
block_size_in_bytes = QK // 2 + scale_size_in_bytes
|
||||
|
||||
|
||||
def ggml_convert_int4(tensor: torch.Tensor, convert_shape_only=False):
|
||||
def ggml_convert_quant(tensor: torch.Tensor, qtype: int, convert_shape_only=False):
|
||||
QK = ggml.ggml_qk_size(qtype)
|
||||
block_size_in_bytes = ggml.ggml_type_size(qtype)
|
||||
|
||||
invalidInputError(tensor.dtype == torch.float,
|
||||
"Input tensor must be float32")
|
||||
|
|
@ -80,13 +78,19 @@ def ggml_convert_int4(tensor: torch.Tensor, convert_shape_only=False):
|
|||
hist = (ctypes.c_int64 * 16)()
|
||||
|
||||
if not convert_shape_only:
|
||||
ggml.ggml_quantize_q4_0(src, dst, n, k, hist)
|
||||
ggml.ggml_quantize_tensor(src, dst, qtype, n, k, hist)
|
||||
return dst_tensor
|
||||
|
||||
|
||||
class ParamsInt4(torch.nn.Parameter):
|
||||
def __new__(cls, data=None, requires_grad=True, old_data=None,
|
||||
quantized=False, _shape=None, convert_shape_only=False):
|
||||
class ParamsQuant(torch.nn.Parameter):
|
||||
def __new__(cls,
|
||||
data=None,
|
||||
requires_grad=True,
|
||||
old_data=None,
|
||||
quantized=False,
|
||||
_shape=None,
|
||||
convert_shape_only=False,
|
||||
qtype=None):
|
||||
if data is None:
|
||||
data = torch.empty(0)
|
||||
|
||||
|
|
@ -95,14 +99,16 @@ class ParamsInt4(torch.nn.Parameter):
|
|||
self.quantized = quantized
|
||||
self._shape = _shape
|
||||
self.convert_shape_only = convert_shape_only
|
||||
self.qtype = qtype
|
||||
return self
|
||||
|
||||
def quantize(self, device):
|
||||
if not self.quantized:
|
||||
w = self.data.contiguous().float()
|
||||
# self.old_data = self.data
|
||||
w_4bit = ggml_convert_int4(w, convert_shape_only=self.convert_shape_only)
|
||||
self.data = w_4bit
|
||||
w_quantized = ggml_convert_quant(w, self.qtype,
|
||||
convert_shape_only=self.convert_shape_only)
|
||||
self.data = w_quantized
|
||||
self.quantized = True
|
||||
self._shape = w.shape
|
||||
return self
|
||||
|
|
@ -129,17 +135,21 @@ class ParamsInt4(torch.nn.Parameter):
|
|||
if (device is not None and device.type == "cpu" and self.data.device.type == "cpu"):
|
||||
return self.quantize(device)
|
||||
else:
|
||||
new_param = ParamsInt4(super().to(device=device,
|
||||
new_param = ParamsQuant(super().to(device=device,
|
||||
dtype=dtype,
|
||||
non_blocking=non_blocking),
|
||||
requires_grad=self.requires_grad,
|
||||
quantized=self.quantized,
|
||||
_shape=self._shape)
|
||||
_shape=self._shape,
|
||||
qtype=self.qtype)
|
||||
|
||||
return new_param
|
||||
|
||||
|
||||
def ggml_matmul_src1_x_src0_t(src0: torch.Tensor, src1: torch.Tensor, src0_shape: torch.Size):
|
||||
def ggml_matmul_src1_x_src0_t(src0: torch.Tensor,
|
||||
src1: torch.Tensor,
|
||||
src0_shape: torch.Size,
|
||||
src0_qtype: int):
|
||||
if src1.dtype != torch.float32:
|
||||
src1 = src1.float()
|
||||
|
||||
|
|
@ -165,6 +175,7 @@ def ggml_matmul_src1_x_src0_t(src0: torch.Tensor, src1: torch.Tensor, src0_shape
|
|||
# ctx=ctx_p,
|
||||
src_0_ne=src_0_ne,
|
||||
src_0_data=src_0_data,
|
||||
src_0_qtype=src0_qtype,
|
||||
src_1_ne=src_1_ne,
|
||||
src_1_data=src_1_data,
|
||||
result=result_ptr,
|
||||
|
|
@ -173,15 +184,16 @@ def ggml_matmul_src1_x_src0_t(src0: torch.Tensor, src1: torch.Tensor, src0_shape
|
|||
return result_t
|
||||
|
||||
|
||||
class LinearInt4(nn.Linear):
|
||||
def __init__(self, input_features, output_features, bias=True):
|
||||
class LinearQuant(nn.Linear):
|
||||
def __init__(self, input_features, output_features, qtype, bias=True):
|
||||
super().__init__(input_features, output_features, bias)
|
||||
self.weight = ParamsInt4(self.weight.data, requires_grad=False,
|
||||
self.weight = ParamsQuant(self.weight.data, requires_grad=False,
|
||||
old_data=self.weight.data,
|
||||
quantized=False, _shape=None)
|
||||
quantized=False, _shape=None, qtype=qtype)
|
||||
self.in_len = input_features
|
||||
self.out_len = output_features
|
||||
self.weight_shape = (self.out_len, self.in_len)
|
||||
self.qtype = qtype
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
# weights are cast automatically as Int8Params, but the bias has to be cast manually
|
||||
|
|
@ -193,7 +205,7 @@ class LinearInt4(nn.Linear):
|
|||
|
||||
x0 = self.weight.data
|
||||
|
||||
result = ggml_matmul_src1_x_src0_t(x0, x, self.weight_shape)
|
||||
result = ggml_matmul_src1_x_src0_t(x0, x, self.weight_shape, self.qtype)
|
||||
new_shape = x_shape[:-1] + (self.out_len,)
|
||||
result = result.view(new_shape)
|
||||
|
||||
|
|
@ -17,6 +17,8 @@
|
|||
import transformers
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from .utils import extract_local_archive_file, load_state_dict, load
|
||||
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
|
||||
from bigdl.llm.utils.common import invalidInputError
|
||||
|
||||
|
||||
class _BaseAutoModelClass:
|
||||
|
|
@ -28,8 +30,17 @@ class _BaseAutoModelClass:
|
|||
*args,
|
||||
**kwargs):
|
||||
load_in_4bit = kwargs.pop("load_in_4bit", False)
|
||||
qtype = 0
|
||||
if load_in_4bit:
|
||||
kwargs["low_cpu_mem_usage"] = True
|
||||
qtype = ggml_tensor_qtype['q4_0']
|
||||
load_in_low_bit = kwargs.pop("load_in_low_bit", "").lower()
|
||||
if load_in_low_bit:
|
||||
kwargs["low_cpu_mem_usage"] = True
|
||||
invalidInputError(qtype in ggml_tensor_qtype,
|
||||
f"Unknown load_in_low_bit value: {qtype},"
|
||||
f" excepted q4_0, q4_1, q5_0, q5_1, q8_0.")
|
||||
qtype = ggml_tensor_qtype[load_in_low_bit]
|
||||
|
||||
subfolder = kwargs.get("subfolder", "")
|
||||
variant = kwargs.get("variant", None)
|
||||
|
|
@ -58,10 +69,10 @@ class _BaseAutoModelClass:
|
|||
# be recorded in AutoConfig,
|
||||
# and this operation is not included in the core Hugging Face infrastructure.
|
||||
if bigdl_transformers_int4:
|
||||
from .convert import ggml_convert_int4
|
||||
from .convert import ggml_convert_quant
|
||||
# We forcefully modify the model's definition
|
||||
# and the tensor shape of int4 weights without quantization.
|
||||
model = ggml_convert_int4(model, convert_shape_only=True)
|
||||
model = ggml_convert_quant(model, convert_shape_only=True)
|
||||
# Load the quantized model at last.
|
||||
archive_file = extract_local_archive_file(pretrained_model_name_or_path,
|
||||
subfolder,
|
||||
|
|
@ -69,10 +80,10 @@ class _BaseAutoModelClass:
|
|||
state_dict = load_state_dict(archive_file)
|
||||
load(model, state_dict)
|
||||
del state_dict
|
||||
elif load_in_4bit:
|
||||
from .convert import ggml_convert_int4
|
||||
elif qtype:
|
||||
from .convert import ggml_convert_quant
|
||||
model = model.to("cpu")
|
||||
model = ggml_convert_int4(model)
|
||||
model = ggml_convert_quant(model, qtype)
|
||||
model.config.update({"bigdl_transformers_int4": True})
|
||||
|
||||
return model
|
||||
|
|
|
|||
|
|
@ -65,13 +65,20 @@ class TestConvertModel(TestCase):
|
|||
assert os.path.isfile(converted_model_path)
|
||||
|
||||
def test_transformer_convert_llama(self):
|
||||
model = AutoModelForCausalLM.from_pretrained(llama_model_path,
|
||||
load_in_4bit=True)
|
||||
model = AutoModelForCausalLM.from_pretrained(llama_model_path, load_in_4bit=True)
|
||||
tempdir = tempfile.mkdtemp(dir=output_dir)
|
||||
model.save_pretrained(tempdir)
|
||||
model = AutoModelForCausalLM.from_pretrained(tempdir)
|
||||
assert model is not None
|
||||
|
||||
def test_transformer_convert_llama_q5(self):
|
||||
model = AutoModelForCausalLM.from_pretrained(llama_model_path,
|
||||
load_in_low_bit="q5_0")
|
||||
|
||||
def test_transformer_convert_llama_q8(self):
|
||||
model = AutoModelForCausalLM.from_pretrained(llama_model_path,
|
||||
load_in_low_bit="q8_0")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
pytest.main([__file__])
|
||||
|
|
|
|||
Loading…
Reference in a new issue