Transformer int4 add qtype, support q4_1 q5_0 q5_1 q8_0 (#8481)

* quant in Q4 5 8

* meet code review

* update readme

* style

* update

* fix error

* fix error

* update

* fix style

* update

* Update README.md

* Add load_in_low_bit
This commit is contained in:
Xin Qiu 2023-07-12 08:23:08 +08:00 committed by GitHub
parent db39d0a6b3
commit cd7a980ec4
8 changed files with 120 additions and 51 deletions

View file

@ -102,6 +102,11 @@ You may run the models using `transformers`-style API in `bigdl-llm`.
See the complete example [here](example/transformers/transformers_int4/transformers_int4_pipeline.py).
Notice: For more quantized precision, you can use another parameter `load_in_low_bit`. `q4_0` and `q4_1` are INT4 quantization, `q5_0` and `q5_1` are INT5 quantization, `q8_0` is INT8 quantization. Like:
```python
model = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_low_bit="q5_0")
```
- ##### Using native INT4 format
You may also convert Hugging Face *Transformers* models into native INT4 format for maximum performance as follows.

View file

@ -955,28 +955,49 @@ _lib.llama_print_system_info.restype = c_char_p
# GGML API
def ggml_quantize_q4_0(
def ggml_quantize_tensor(
src, # type: ctypes.Array[ctypes.c_float] # type: ignore
dst: ctypes.c_void_p,
qtype: ctypes.c_int,
n: ctypes.c_int,
k: ctypes.c_int,
hist, # type: ctypes.Array[ctypes.c_int64] # type: ignore
) -> int:
return _lib.ggml_quantize_q4_0(src, dst, n, k, hist)
return _lib.ggml_quantize_tensor(src, dst, qtype, n, k, hist)
_lib.ggml_quantize_q4_0.argtypes = [
_lib.ggml_quantize_tensor.argtypes = [
ctypes.POINTER(ctypes.c_float),
ctypes.c_void_p,
ctypes.c_int,
ctypes.c_int,
ctypes.c_int,
ctypes.POINTER(ctypes.c_int64),
]
_lib.ggml_quantize_q4_0.restype = ctypes.c_size_t
_lib.ggml_quantize_tensor.restype = ctypes.c_size_t
def ggml_type_size(qtype: ctypes.c_int) -> int:
return _lib.ggml_type_size(qtype)
_lib.ggml_type_size.argtypes = [
ctypes.c_int,
]
_lib.ggml_type_size.restype = ctypes.c_int
def ggml_qk_size(qtype: ctypes.c_int) -> int:
return _lib.ggml_qk_size(qtype)
_lib.ggml_qk_size.argtypes = [
ctypes.c_int,
]
_lib.ggml_qk_size.restype = ctypes.c_int
def ggml_compute_forward_mul_mat_q_fp32(src_0_ne, # type: ctypes.Array[ctypes.c_int64]
src_0_data, # type: ctypes.c_void_p
src_0_qtype, # type: int
src_1_ne, # type: ctypes.Array[ctypes.c_int64]
src_1_data, # type: ctypes.c_void_p
result, # type: ctypes.c_void_p
@ -991,6 +1012,7 @@ def ggml_compute_forward_mul_mat_q_fp32(src_0_ne, # type: ctypes.Array[ctypes.c
return _lib.ggml_compute_forward_mul_mat_q_fp32(src_0_ne,
src_0_data,
src_0_qtype,
src_1_ne,
src_1_data,
result)
@ -999,6 +1021,7 @@ def ggml_compute_forward_mul_mat_q_fp32(src_0_ne, # type: ctypes.Array[ctypes.c
_lib.ggml_compute_forward_mul_mat_q_fp32.argtypes = [
ctypes.POINTER(ctypes.c_int64),
ctypes.c_void_p,
ctypes.c_int,
ctypes.POINTER(ctypes.c_int64),
ctypes.c_void_p,
ctypes.c_void_p

View file

@ -24,6 +24,13 @@ from pathlib import Path
dirname, _ = os.path.split(os.path.abspath(__file__))
libs_dirname = os.path.dirname(dirname)
# ggml quantized tensor type, this is different from below file quantized type(_quantize_type)
ggml_tensor_qtype = {"q4_0": 2,
"q4_1": 3,
"q5_0": 6,
"q5_1": 7,
"q8_0": 8}
_llama_quantize_type = {"q4_0": 2,
"q4_1": 3,
"q5_0": 8,

View file

@ -14,6 +14,6 @@
# limitations under the License.
#
from .convert import ggml_convert_int4
from .convert import ggml_convert_quant
from .model import AutoModelForCausalLM, AutoModel
from .modelling_bigdl import BigdlNativeForCausalLM

View file

@ -37,11 +37,11 @@
import torch
import torch.nn as nn
from accelerate import init_empty_weights
from bigdl.llm.transformers.linear_int4 import LinearInt4, ParamsInt4
from bigdl.llm.transformers.linear_quant import LinearQuant, ParamsQuant
import warnings
def _replace_with_int4_linear(model, modules_to_not_convert=None,
def _replace_with_quant_linear(model, qtype, modules_to_not_convert=None,
current_key_name=None, convert_shape_only=False):
has_been_replaced = False
for name, module in model.named_children():
@ -53,19 +53,22 @@ def _replace_with_int4_linear(model, modules_to_not_convert=None,
if not any(key in ".".join(current_key_name) for key in modules_to_not_convert):
with init_empty_weights():
new_linear = LinearInt4(
new_linear = LinearQuant(
module.in_features,
module.out_features,
qtype,
module.bias is not None,
)
# Copy the weights
paramsint4 = ParamsInt4(data=module.weight.data,
paramsQuant = ParamsQuant(data=module.weight.data,
requires_grad=False,
quantized=False,
convert_shape_only=convert_shape_only,
_shape=None).to("cpu")
new_linear._parameters['weight'] = paramsint4
_shape=None,
qtype=qtype).to("cpu")
new_linear._parameters['weight'] = paramsQuant
if module.bias is not None:
new_linear._parameters['bias'] = nn.Parameter(module.bias.data).to("cpu")
@ -78,18 +81,19 @@ def _replace_with_int4_linear(model, modules_to_not_convert=None,
# Remove the last key for recursion
if len(list(module.children())) > 0:
_, has_been_replaced = _replace_with_int4_linear(
_, has_been_replaced = _replace_with_quant_linear(
module,
qtype,
modules_to_not_convert,
current_key_name,
)
return model, has_been_replaced
def ggml_convert_int4(model, convert_shape_only=False):
def ggml_convert_quant(model, qtype, convert_shape_only=False):
modules_to_not_convert = [] # ["lm_head"]
model, has_been_replaced = _replace_with_int4_linear(
model, modules_to_not_convert, None, convert_shape_only=convert_shape_only
model, has_been_replaced = _replace_with_quant_linear(
model, qtype, modules_to_not_convert, None, convert_shape_only=convert_shape_only
)
if not has_been_replaced:
warnings.warn(

View file

@ -55,12 +55,10 @@ import bigdl.llm.ggml.model.llama.llama_cpp as ggml
import torch
import ctypes
QK = 64 # todo read this value from libllama.so
scale_size_in_bytes = 4
block_size_in_bytes = QK // 2 + scale_size_in_bytes
def ggml_convert_int4(tensor: torch.Tensor, convert_shape_only=False):
def ggml_convert_quant(tensor: torch.Tensor, qtype: int, convert_shape_only=False):
QK = ggml.ggml_qk_size(qtype)
block_size_in_bytes = ggml.ggml_type_size(qtype)
invalidInputError(tensor.dtype == torch.float,
"Input tensor must be float32")
@ -80,13 +78,19 @@ def ggml_convert_int4(tensor: torch.Tensor, convert_shape_only=False):
hist = (ctypes.c_int64 * 16)()
if not convert_shape_only:
ggml.ggml_quantize_q4_0(src, dst, n, k, hist)
ggml.ggml_quantize_tensor(src, dst, qtype, n, k, hist)
return dst_tensor
class ParamsInt4(torch.nn.Parameter):
def __new__(cls, data=None, requires_grad=True, old_data=None,
quantized=False, _shape=None, convert_shape_only=False):
class ParamsQuant(torch.nn.Parameter):
def __new__(cls,
data=None,
requires_grad=True,
old_data=None,
quantized=False,
_shape=None,
convert_shape_only=False,
qtype=None):
if data is None:
data = torch.empty(0)
@ -95,14 +99,16 @@ class ParamsInt4(torch.nn.Parameter):
self.quantized = quantized
self._shape = _shape
self.convert_shape_only = convert_shape_only
self.qtype = qtype
return self
def quantize(self, device):
if not self.quantized:
w = self.data.contiguous().float()
# self.old_data = self.data
w_4bit = ggml_convert_int4(w, convert_shape_only=self.convert_shape_only)
self.data = w_4bit
w_quantized = ggml_convert_quant(w, self.qtype,
convert_shape_only=self.convert_shape_only)
self.data = w_quantized
self.quantized = True
self._shape = w.shape
return self
@ -129,17 +135,21 @@ class ParamsInt4(torch.nn.Parameter):
if (device is not None and device.type == "cpu" and self.data.device.type == "cpu"):
return self.quantize(device)
else:
new_param = ParamsInt4(super().to(device=device,
new_param = ParamsQuant(super().to(device=device,
dtype=dtype,
non_blocking=non_blocking),
requires_grad=self.requires_grad,
quantized=self.quantized,
_shape=self._shape)
_shape=self._shape,
qtype=self.qtype)
return new_param
def ggml_matmul_src1_x_src0_t(src0: torch.Tensor, src1: torch.Tensor, src0_shape: torch.Size):
def ggml_matmul_src1_x_src0_t(src0: torch.Tensor,
src1: torch.Tensor,
src0_shape: torch.Size,
src0_qtype: int):
if src1.dtype != torch.float32:
src1 = src1.float()
@ -165,6 +175,7 @@ def ggml_matmul_src1_x_src0_t(src0: torch.Tensor, src1: torch.Tensor, src0_shape
# ctx=ctx_p,
src_0_ne=src_0_ne,
src_0_data=src_0_data,
src_0_qtype=src0_qtype,
src_1_ne=src_1_ne,
src_1_data=src_1_data,
result=result_ptr,
@ -173,15 +184,16 @@ def ggml_matmul_src1_x_src0_t(src0: torch.Tensor, src1: torch.Tensor, src0_shape
return result_t
class LinearInt4(nn.Linear):
def __init__(self, input_features, output_features, bias=True):
class LinearQuant(nn.Linear):
def __init__(self, input_features, output_features, qtype, bias=True):
super().__init__(input_features, output_features, bias)
self.weight = ParamsInt4(self.weight.data, requires_grad=False,
self.weight = ParamsQuant(self.weight.data, requires_grad=False,
old_data=self.weight.data,
quantized=False, _shape=None)
quantized=False, _shape=None, qtype=qtype)
self.in_len = input_features
self.out_len = output_features
self.weight_shape = (self.out_len, self.in_len)
self.qtype = qtype
def forward(self, x: torch.Tensor):
# weights are cast automatically as Int8Params, but the bias has to be cast manually
@ -193,7 +205,7 @@ class LinearInt4(nn.Linear):
x0 = self.weight.data
result = ggml_matmul_src1_x_src0_t(x0, x, self.weight_shape)
result = ggml_matmul_src1_x_src0_t(x0, x, self.weight_shape, self.qtype)
new_shape = x_shape[:-1] + (self.out_len,)
result = result.view(new_shape)

View file

@ -17,6 +17,8 @@
import transformers
from transformers.configuration_utils import PretrainedConfig
from .utils import extract_local_archive_file, load_state_dict, load
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
from bigdl.llm.utils.common import invalidInputError
class _BaseAutoModelClass:
@ -28,8 +30,17 @@ class _BaseAutoModelClass:
*args,
**kwargs):
load_in_4bit = kwargs.pop("load_in_4bit", False)
qtype = 0
if load_in_4bit:
kwargs["low_cpu_mem_usage"] = True
qtype = ggml_tensor_qtype['q4_0']
load_in_low_bit = kwargs.pop("load_in_low_bit", "").lower()
if load_in_low_bit:
kwargs["low_cpu_mem_usage"] = True
invalidInputError(qtype in ggml_tensor_qtype,
f"Unknown load_in_low_bit value: {qtype},"
f" excepted q4_0, q4_1, q5_0, q5_1, q8_0.")
qtype = ggml_tensor_qtype[load_in_low_bit]
subfolder = kwargs.get("subfolder", "")
variant = kwargs.get("variant", None)
@ -58,10 +69,10 @@ class _BaseAutoModelClass:
# be recorded in AutoConfig,
# and this operation is not included in the core Hugging Face infrastructure.
if bigdl_transformers_int4:
from .convert import ggml_convert_int4
from .convert import ggml_convert_quant
# We forcefully modify the model's definition
# and the tensor shape of int4 weights without quantization.
model = ggml_convert_int4(model, convert_shape_only=True)
model = ggml_convert_quant(model, convert_shape_only=True)
# Load the quantized model at last.
archive_file = extract_local_archive_file(pretrained_model_name_or_path,
subfolder,
@ -69,10 +80,10 @@ class _BaseAutoModelClass:
state_dict = load_state_dict(archive_file)
load(model, state_dict)
del state_dict
elif load_in_4bit:
from .convert import ggml_convert_int4
elif qtype:
from .convert import ggml_convert_quant
model = model.to("cpu")
model = ggml_convert_int4(model)
model = ggml_convert_quant(model, qtype)
model.config.update({"bigdl_transformers_int4": True})
return model

View file

@ -65,13 +65,20 @@ class TestConvertModel(TestCase):
assert os.path.isfile(converted_model_path)
def test_transformer_convert_llama(self):
model = AutoModelForCausalLM.from_pretrained(llama_model_path,
load_in_4bit=True)
model = AutoModelForCausalLM.from_pretrained(llama_model_path, load_in_4bit=True)
tempdir = tempfile.mkdtemp(dir=output_dir)
model.save_pretrained(tempdir)
model = AutoModelForCausalLM.from_pretrained(tempdir)
assert model is not None
def test_transformer_convert_llama_q5(self):
model = AutoModelForCausalLM.from_pretrained(llama_model_path,
load_in_low_bit="q5_0")
def test_transformer_convert_llama_q8(self):
model = AutoModelForCausalLM.from_pretrained(llama_model_path,
load_in_low_bit="q8_0")
if __name__ == '__main__':
pytest.main([__file__])