Transformer int4 add qtype, support q4_1 q5_0 q5_1 q8_0 (#8481)
* quant in Q4 5 8 * meet code review * update readme * style * update * fix error * fix error * update * fix style * update * Update README.md * Add load_in_low_bit
This commit is contained in:
parent
db39d0a6b3
commit
cd7a980ec4
8 changed files with 120 additions and 51 deletions
|
|
@ -100,7 +100,12 @@ You may run the models using `transformers`-style API in `bigdl-llm`.
|
||||||
output = tokenizer.batch_decode(output_ids)
|
output = tokenizer.batch_decode(output_ids)
|
||||||
```
|
```
|
||||||
|
|
||||||
See the complete example [here](example/transformers/transformers_int4/transformers_int4_pipeline.py).
|
See the complete example [here](example/transformers/transformers_int4/transformers_int4_pipeline.py).
|
||||||
|
|
||||||
|
Notice: For more quantized precision, you can use another parameter `load_in_low_bit`. `q4_0` and `q4_1` are INT4 quantization, `q5_0` and `q5_1` are INT5 quantization, `q8_0` is INT8 quantization. Like:
|
||||||
|
```python
|
||||||
|
model = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_low_bit="q5_0")
|
||||||
|
```
|
||||||
|
|
||||||
- ##### Using native INT4 format
|
- ##### Using native INT4 format
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -955,28 +955,49 @@ _lib.llama_print_system_info.restype = c_char_p
|
||||||
|
|
||||||
|
|
||||||
# GGML API
|
# GGML API
|
||||||
def ggml_quantize_q4_0(
|
def ggml_quantize_tensor(
|
||||||
src, # type: ctypes.Array[ctypes.c_float] # type: ignore
|
src, # type: ctypes.Array[ctypes.c_float] # type: ignore
|
||||||
dst: ctypes.c_void_p,
|
dst: ctypes.c_void_p,
|
||||||
|
qtype: ctypes.c_int,
|
||||||
n: ctypes.c_int,
|
n: ctypes.c_int,
|
||||||
k: ctypes.c_int,
|
k: ctypes.c_int,
|
||||||
hist, # type: ctypes.Array[ctypes.c_int64] # type: ignore
|
hist, # type: ctypes.Array[ctypes.c_int64] # type: ignore
|
||||||
) -> int:
|
) -> int:
|
||||||
return _lib.ggml_quantize_q4_0(src, dst, n, k, hist)
|
return _lib.ggml_quantize_tensor(src, dst, qtype, n, k, hist)
|
||||||
|
|
||||||
|
|
||||||
_lib.ggml_quantize_q4_0.argtypes = [
|
_lib.ggml_quantize_tensor.argtypes = [
|
||||||
ctypes.POINTER(ctypes.c_float),
|
ctypes.POINTER(ctypes.c_float),
|
||||||
ctypes.c_void_p,
|
ctypes.c_void_p,
|
||||||
ctypes.c_int,
|
ctypes.c_int,
|
||||||
ctypes.c_int,
|
ctypes.c_int,
|
||||||
|
ctypes.c_int,
|
||||||
ctypes.POINTER(ctypes.c_int64),
|
ctypes.POINTER(ctypes.c_int64),
|
||||||
]
|
]
|
||||||
_lib.ggml_quantize_q4_0.restype = ctypes.c_size_t
|
_lib.ggml_quantize_tensor.restype = ctypes.c_size_t
|
||||||
|
|
||||||
|
|
||||||
|
def ggml_type_size(qtype: ctypes.c_int) -> int:
|
||||||
|
return _lib.ggml_type_size(qtype)
|
||||||
|
|
||||||
|
_lib.ggml_type_size.argtypes = [
|
||||||
|
ctypes.c_int,
|
||||||
|
]
|
||||||
|
_lib.ggml_type_size.restype = ctypes.c_int
|
||||||
|
|
||||||
|
|
||||||
|
def ggml_qk_size(qtype: ctypes.c_int) -> int:
|
||||||
|
return _lib.ggml_qk_size(qtype)
|
||||||
|
|
||||||
|
_lib.ggml_qk_size.argtypes = [
|
||||||
|
ctypes.c_int,
|
||||||
|
]
|
||||||
|
_lib.ggml_qk_size.restype = ctypes.c_int
|
||||||
|
|
||||||
|
|
||||||
def ggml_compute_forward_mul_mat_q_fp32(src_0_ne, # type: ctypes.Array[ctypes.c_int64]
|
def ggml_compute_forward_mul_mat_q_fp32(src_0_ne, # type: ctypes.Array[ctypes.c_int64]
|
||||||
src_0_data, # type: ctypes.c_void_p
|
src_0_data, # type: ctypes.c_void_p
|
||||||
|
src_0_qtype, # type: int
|
||||||
src_1_ne, # type: ctypes.Array[ctypes.c_int64]
|
src_1_ne, # type: ctypes.Array[ctypes.c_int64]
|
||||||
src_1_data, # type: ctypes.c_void_p
|
src_1_data, # type: ctypes.c_void_p
|
||||||
result, # type: ctypes.c_void_p
|
result, # type: ctypes.c_void_p
|
||||||
|
|
@ -991,6 +1012,7 @@ def ggml_compute_forward_mul_mat_q_fp32(src_0_ne, # type: ctypes.Array[ctypes.c
|
||||||
|
|
||||||
return _lib.ggml_compute_forward_mul_mat_q_fp32(src_0_ne,
|
return _lib.ggml_compute_forward_mul_mat_q_fp32(src_0_ne,
|
||||||
src_0_data,
|
src_0_data,
|
||||||
|
src_0_qtype,
|
||||||
src_1_ne,
|
src_1_ne,
|
||||||
src_1_data,
|
src_1_data,
|
||||||
result)
|
result)
|
||||||
|
|
@ -999,6 +1021,7 @@ def ggml_compute_forward_mul_mat_q_fp32(src_0_ne, # type: ctypes.Array[ctypes.c
|
||||||
_lib.ggml_compute_forward_mul_mat_q_fp32.argtypes = [
|
_lib.ggml_compute_forward_mul_mat_q_fp32.argtypes = [
|
||||||
ctypes.POINTER(ctypes.c_int64),
|
ctypes.POINTER(ctypes.c_int64),
|
||||||
ctypes.c_void_p,
|
ctypes.c_void_p,
|
||||||
|
ctypes.c_int,
|
||||||
ctypes.POINTER(ctypes.c_int64),
|
ctypes.POINTER(ctypes.c_int64),
|
||||||
ctypes.c_void_p,
|
ctypes.c_void_p,
|
||||||
ctypes.c_void_p
|
ctypes.c_void_p
|
||||||
|
|
|
||||||
|
|
@ -24,6 +24,13 @@ from pathlib import Path
|
||||||
dirname, _ = os.path.split(os.path.abspath(__file__))
|
dirname, _ = os.path.split(os.path.abspath(__file__))
|
||||||
libs_dirname = os.path.dirname(dirname)
|
libs_dirname = os.path.dirname(dirname)
|
||||||
|
|
||||||
|
# ggml quantized tensor type, this is different from below file quantized type(_quantize_type)
|
||||||
|
ggml_tensor_qtype = {"q4_0": 2,
|
||||||
|
"q4_1": 3,
|
||||||
|
"q5_0": 6,
|
||||||
|
"q5_1": 7,
|
||||||
|
"q8_0": 8}
|
||||||
|
|
||||||
_llama_quantize_type = {"q4_0": 2,
|
_llama_quantize_type = {"q4_0": 2,
|
||||||
"q4_1": 3,
|
"q4_1": 3,
|
||||||
"q5_0": 8,
|
"q5_0": 8,
|
||||||
|
|
|
||||||
|
|
@ -14,6 +14,6 @@
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
#
|
#
|
||||||
|
|
||||||
from .convert import ggml_convert_int4
|
from .convert import ggml_convert_quant
|
||||||
from .model import AutoModelForCausalLM, AutoModel
|
from .model import AutoModelForCausalLM, AutoModel
|
||||||
from .modelling_bigdl import BigdlNativeForCausalLM
|
from .modelling_bigdl import BigdlNativeForCausalLM
|
||||||
|
|
|
||||||
|
|
@ -37,12 +37,12 @@
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from accelerate import init_empty_weights
|
from accelerate import init_empty_weights
|
||||||
from bigdl.llm.transformers.linear_int4 import LinearInt4, ParamsInt4
|
from bigdl.llm.transformers.linear_quant import LinearQuant, ParamsQuant
|
||||||
import warnings
|
import warnings
|
||||||
|
|
||||||
|
|
||||||
def _replace_with_int4_linear(model, modules_to_not_convert=None,
|
def _replace_with_quant_linear(model, qtype, modules_to_not_convert=None,
|
||||||
current_key_name=None, convert_shape_only=False):
|
current_key_name=None, convert_shape_only=False):
|
||||||
has_been_replaced = False
|
has_been_replaced = False
|
||||||
for name, module in model.named_children():
|
for name, module in model.named_children():
|
||||||
if current_key_name is None:
|
if current_key_name is None:
|
||||||
|
|
@ -53,19 +53,22 @@ def _replace_with_int4_linear(model, modules_to_not_convert=None,
|
||||||
if not any(key in ".".join(current_key_name) for key in modules_to_not_convert):
|
if not any(key in ".".join(current_key_name) for key in modules_to_not_convert):
|
||||||
with init_empty_weights():
|
with init_empty_weights():
|
||||||
|
|
||||||
new_linear = LinearInt4(
|
new_linear = LinearQuant(
|
||||||
module.in_features,
|
module.in_features,
|
||||||
module.out_features,
|
module.out_features,
|
||||||
|
qtype,
|
||||||
module.bias is not None,
|
module.bias is not None,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Copy the weights
|
# Copy the weights
|
||||||
paramsint4 = ParamsInt4(data=module.weight.data,
|
paramsQuant = ParamsQuant(data=module.weight.data,
|
||||||
requires_grad=False,
|
requires_grad=False,
|
||||||
quantized=False,
|
quantized=False,
|
||||||
convert_shape_only=convert_shape_only,
|
convert_shape_only=convert_shape_only,
|
||||||
_shape=None).to("cpu")
|
_shape=None,
|
||||||
new_linear._parameters['weight'] = paramsint4
|
qtype=qtype).to("cpu")
|
||||||
|
new_linear._parameters['weight'] = paramsQuant
|
||||||
|
|
||||||
if module.bias is not None:
|
if module.bias is not None:
|
||||||
new_linear._parameters['bias'] = nn.Parameter(module.bias.data).to("cpu")
|
new_linear._parameters['bias'] = nn.Parameter(module.bias.data).to("cpu")
|
||||||
|
|
||||||
|
|
@ -78,18 +81,19 @@ def _replace_with_int4_linear(model, modules_to_not_convert=None,
|
||||||
|
|
||||||
# Remove the last key for recursion
|
# Remove the last key for recursion
|
||||||
if len(list(module.children())) > 0:
|
if len(list(module.children())) > 0:
|
||||||
_, has_been_replaced = _replace_with_int4_linear(
|
_, has_been_replaced = _replace_with_quant_linear(
|
||||||
module,
|
module,
|
||||||
|
qtype,
|
||||||
modules_to_not_convert,
|
modules_to_not_convert,
|
||||||
current_key_name,
|
current_key_name,
|
||||||
)
|
)
|
||||||
return model, has_been_replaced
|
return model, has_been_replaced
|
||||||
|
|
||||||
|
|
||||||
def ggml_convert_int4(model, convert_shape_only=False):
|
def ggml_convert_quant(model, qtype, convert_shape_only=False):
|
||||||
modules_to_not_convert = [] # ["lm_head"]
|
modules_to_not_convert = [] # ["lm_head"]
|
||||||
model, has_been_replaced = _replace_with_int4_linear(
|
model, has_been_replaced = _replace_with_quant_linear(
|
||||||
model, modules_to_not_convert, None, convert_shape_only=convert_shape_only
|
model, qtype, modules_to_not_convert, None, convert_shape_only=convert_shape_only
|
||||||
)
|
)
|
||||||
if not has_been_replaced:
|
if not has_been_replaced:
|
||||||
warnings.warn(
|
warnings.warn(
|
||||||
|
|
|
||||||
|
|
@ -55,12 +55,10 @@ import bigdl.llm.ggml.model.llama.llama_cpp as ggml
|
||||||
import torch
|
import torch
|
||||||
import ctypes
|
import ctypes
|
||||||
|
|
||||||
QK = 64 # todo read this value from libllama.so
|
|
||||||
scale_size_in_bytes = 4
|
|
||||||
block_size_in_bytes = QK // 2 + scale_size_in_bytes
|
|
||||||
|
|
||||||
|
def ggml_convert_quant(tensor: torch.Tensor, qtype: int, convert_shape_only=False):
|
||||||
def ggml_convert_int4(tensor: torch.Tensor, convert_shape_only=False):
|
QK = ggml.ggml_qk_size(qtype)
|
||||||
|
block_size_in_bytes = ggml.ggml_type_size(qtype)
|
||||||
|
|
||||||
invalidInputError(tensor.dtype == torch.float,
|
invalidInputError(tensor.dtype == torch.float,
|
||||||
"Input tensor must be float32")
|
"Input tensor must be float32")
|
||||||
|
|
@ -80,13 +78,19 @@ def ggml_convert_int4(tensor: torch.Tensor, convert_shape_only=False):
|
||||||
hist = (ctypes.c_int64 * 16)()
|
hist = (ctypes.c_int64 * 16)()
|
||||||
|
|
||||||
if not convert_shape_only:
|
if not convert_shape_only:
|
||||||
ggml.ggml_quantize_q4_0(src, dst, n, k, hist)
|
ggml.ggml_quantize_tensor(src, dst, qtype, n, k, hist)
|
||||||
return dst_tensor
|
return dst_tensor
|
||||||
|
|
||||||
|
|
||||||
class ParamsInt4(torch.nn.Parameter):
|
class ParamsQuant(torch.nn.Parameter):
|
||||||
def __new__(cls, data=None, requires_grad=True, old_data=None,
|
def __new__(cls,
|
||||||
quantized=False, _shape=None, convert_shape_only=False):
|
data=None,
|
||||||
|
requires_grad=True,
|
||||||
|
old_data=None,
|
||||||
|
quantized=False,
|
||||||
|
_shape=None,
|
||||||
|
convert_shape_only=False,
|
||||||
|
qtype=None):
|
||||||
if data is None:
|
if data is None:
|
||||||
data = torch.empty(0)
|
data = torch.empty(0)
|
||||||
|
|
||||||
|
|
@ -95,14 +99,16 @@ class ParamsInt4(torch.nn.Parameter):
|
||||||
self.quantized = quantized
|
self.quantized = quantized
|
||||||
self._shape = _shape
|
self._shape = _shape
|
||||||
self.convert_shape_only = convert_shape_only
|
self.convert_shape_only = convert_shape_only
|
||||||
|
self.qtype = qtype
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def quantize(self, device):
|
def quantize(self, device):
|
||||||
if not self.quantized:
|
if not self.quantized:
|
||||||
w = self.data.contiguous().float()
|
w = self.data.contiguous().float()
|
||||||
# self.old_data = self.data
|
# self.old_data = self.data
|
||||||
w_4bit = ggml_convert_int4(w, convert_shape_only=self.convert_shape_only)
|
w_quantized = ggml_convert_quant(w, self.qtype,
|
||||||
self.data = w_4bit
|
convert_shape_only=self.convert_shape_only)
|
||||||
|
self.data = w_quantized
|
||||||
self.quantized = True
|
self.quantized = True
|
||||||
self._shape = w.shape
|
self._shape = w.shape
|
||||||
return self
|
return self
|
||||||
|
|
@ -129,17 +135,21 @@ class ParamsInt4(torch.nn.Parameter):
|
||||||
if (device is not None and device.type == "cpu" and self.data.device.type == "cpu"):
|
if (device is not None and device.type == "cpu" and self.data.device.type == "cpu"):
|
||||||
return self.quantize(device)
|
return self.quantize(device)
|
||||||
else:
|
else:
|
||||||
new_param = ParamsInt4(super().to(device=device,
|
new_param = ParamsQuant(super().to(device=device,
|
||||||
dtype=dtype,
|
dtype=dtype,
|
||||||
non_blocking=non_blocking),
|
non_blocking=non_blocking),
|
||||||
requires_grad=self.requires_grad,
|
requires_grad=self.requires_grad,
|
||||||
quantized=self.quantized,
|
quantized=self.quantized,
|
||||||
_shape=self._shape)
|
_shape=self._shape,
|
||||||
|
qtype=self.qtype)
|
||||||
|
|
||||||
return new_param
|
return new_param
|
||||||
|
|
||||||
|
|
||||||
def ggml_matmul_src1_x_src0_t(src0: torch.Tensor, src1: torch.Tensor, src0_shape: torch.Size):
|
def ggml_matmul_src1_x_src0_t(src0: torch.Tensor,
|
||||||
|
src1: torch.Tensor,
|
||||||
|
src0_shape: torch.Size,
|
||||||
|
src0_qtype: int):
|
||||||
if src1.dtype != torch.float32:
|
if src1.dtype != torch.float32:
|
||||||
src1 = src1.float()
|
src1 = src1.float()
|
||||||
|
|
||||||
|
|
@ -165,6 +175,7 @@ def ggml_matmul_src1_x_src0_t(src0: torch.Tensor, src1: torch.Tensor, src0_shape
|
||||||
# ctx=ctx_p,
|
# ctx=ctx_p,
|
||||||
src_0_ne=src_0_ne,
|
src_0_ne=src_0_ne,
|
||||||
src_0_data=src_0_data,
|
src_0_data=src_0_data,
|
||||||
|
src_0_qtype=src0_qtype,
|
||||||
src_1_ne=src_1_ne,
|
src_1_ne=src_1_ne,
|
||||||
src_1_data=src_1_data,
|
src_1_data=src_1_data,
|
||||||
result=result_ptr,
|
result=result_ptr,
|
||||||
|
|
@ -173,15 +184,16 @@ def ggml_matmul_src1_x_src0_t(src0: torch.Tensor, src1: torch.Tensor, src0_shape
|
||||||
return result_t
|
return result_t
|
||||||
|
|
||||||
|
|
||||||
class LinearInt4(nn.Linear):
|
class LinearQuant(nn.Linear):
|
||||||
def __init__(self, input_features, output_features, bias=True):
|
def __init__(self, input_features, output_features, qtype, bias=True):
|
||||||
super().__init__(input_features, output_features, bias)
|
super().__init__(input_features, output_features, bias)
|
||||||
self.weight = ParamsInt4(self.weight.data, requires_grad=False,
|
self.weight = ParamsQuant(self.weight.data, requires_grad=False,
|
||||||
old_data=self.weight.data,
|
old_data=self.weight.data,
|
||||||
quantized=False, _shape=None)
|
quantized=False, _shape=None, qtype=qtype)
|
||||||
self.in_len = input_features
|
self.in_len = input_features
|
||||||
self.out_len = output_features
|
self.out_len = output_features
|
||||||
self.weight_shape = (self.out_len, self.in_len)
|
self.weight_shape = (self.out_len, self.in_len)
|
||||||
|
self.qtype = qtype
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor):
|
def forward(self, x: torch.Tensor):
|
||||||
# weights are cast automatically as Int8Params, but the bias has to be cast manually
|
# weights are cast automatically as Int8Params, but the bias has to be cast manually
|
||||||
|
|
@ -193,7 +205,7 @@ class LinearInt4(nn.Linear):
|
||||||
|
|
||||||
x0 = self.weight.data
|
x0 = self.weight.data
|
||||||
|
|
||||||
result = ggml_matmul_src1_x_src0_t(x0, x, self.weight_shape)
|
result = ggml_matmul_src1_x_src0_t(x0, x, self.weight_shape, self.qtype)
|
||||||
new_shape = x_shape[:-1] + (self.out_len,)
|
new_shape = x_shape[:-1] + (self.out_len,)
|
||||||
result = result.view(new_shape)
|
result = result.view(new_shape)
|
||||||
|
|
||||||
|
|
@ -17,6 +17,8 @@
|
||||||
import transformers
|
import transformers
|
||||||
from transformers.configuration_utils import PretrainedConfig
|
from transformers.configuration_utils import PretrainedConfig
|
||||||
from .utils import extract_local_archive_file, load_state_dict, load
|
from .utils import extract_local_archive_file, load_state_dict, load
|
||||||
|
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
|
||||||
|
from bigdl.llm.utils.common import invalidInputError
|
||||||
|
|
||||||
|
|
||||||
class _BaseAutoModelClass:
|
class _BaseAutoModelClass:
|
||||||
|
|
@ -28,8 +30,17 @@ class _BaseAutoModelClass:
|
||||||
*args,
|
*args,
|
||||||
**kwargs):
|
**kwargs):
|
||||||
load_in_4bit = kwargs.pop("load_in_4bit", False)
|
load_in_4bit = kwargs.pop("load_in_4bit", False)
|
||||||
|
qtype = 0
|
||||||
if load_in_4bit:
|
if load_in_4bit:
|
||||||
kwargs["low_cpu_mem_usage"] = True
|
kwargs["low_cpu_mem_usage"] = True
|
||||||
|
qtype = ggml_tensor_qtype['q4_0']
|
||||||
|
load_in_low_bit = kwargs.pop("load_in_low_bit", "").lower()
|
||||||
|
if load_in_low_bit:
|
||||||
|
kwargs["low_cpu_mem_usage"] = True
|
||||||
|
invalidInputError(qtype in ggml_tensor_qtype,
|
||||||
|
f"Unknown load_in_low_bit value: {qtype},"
|
||||||
|
f" excepted q4_0, q4_1, q5_0, q5_1, q8_0.")
|
||||||
|
qtype = ggml_tensor_qtype[load_in_low_bit]
|
||||||
|
|
||||||
subfolder = kwargs.get("subfolder", "")
|
subfolder = kwargs.get("subfolder", "")
|
||||||
variant = kwargs.get("variant", None)
|
variant = kwargs.get("variant", None)
|
||||||
|
|
@ -58,10 +69,10 @@ class _BaseAutoModelClass:
|
||||||
# be recorded in AutoConfig,
|
# be recorded in AutoConfig,
|
||||||
# and this operation is not included in the core Hugging Face infrastructure.
|
# and this operation is not included in the core Hugging Face infrastructure.
|
||||||
if bigdl_transformers_int4:
|
if bigdl_transformers_int4:
|
||||||
from .convert import ggml_convert_int4
|
from .convert import ggml_convert_quant
|
||||||
# We forcefully modify the model's definition
|
# We forcefully modify the model's definition
|
||||||
# and the tensor shape of int4 weights without quantization.
|
# and the tensor shape of int4 weights without quantization.
|
||||||
model = ggml_convert_int4(model, convert_shape_only=True)
|
model = ggml_convert_quant(model, convert_shape_only=True)
|
||||||
# Load the quantized model at last.
|
# Load the quantized model at last.
|
||||||
archive_file = extract_local_archive_file(pretrained_model_name_or_path,
|
archive_file = extract_local_archive_file(pretrained_model_name_or_path,
|
||||||
subfolder,
|
subfolder,
|
||||||
|
|
@ -69,10 +80,10 @@ class _BaseAutoModelClass:
|
||||||
state_dict = load_state_dict(archive_file)
|
state_dict = load_state_dict(archive_file)
|
||||||
load(model, state_dict)
|
load(model, state_dict)
|
||||||
del state_dict
|
del state_dict
|
||||||
elif load_in_4bit:
|
elif qtype:
|
||||||
from .convert import ggml_convert_int4
|
from .convert import ggml_convert_quant
|
||||||
model = model.to("cpu")
|
model = model.to("cpu")
|
||||||
model = ggml_convert_int4(model)
|
model = ggml_convert_quant(model, qtype)
|
||||||
model.config.update({"bigdl_transformers_int4": True})
|
model.config.update({"bigdl_transformers_int4": True})
|
||||||
|
|
||||||
return model
|
return model
|
||||||
|
|
|
||||||
|
|
@ -65,13 +65,20 @@ class TestConvertModel(TestCase):
|
||||||
assert os.path.isfile(converted_model_path)
|
assert os.path.isfile(converted_model_path)
|
||||||
|
|
||||||
def test_transformer_convert_llama(self):
|
def test_transformer_convert_llama(self):
|
||||||
model = AutoModelForCausalLM.from_pretrained(llama_model_path,
|
model = AutoModelForCausalLM.from_pretrained(llama_model_path, load_in_4bit=True)
|
||||||
load_in_4bit=True)
|
|
||||||
tempdir = tempfile.mkdtemp(dir=output_dir)
|
tempdir = tempfile.mkdtemp(dir=output_dir)
|
||||||
model.save_pretrained(tempdir)
|
model.save_pretrained(tempdir)
|
||||||
model = AutoModelForCausalLM.from_pretrained(tempdir)
|
model = AutoModelForCausalLM.from_pretrained(tempdir)
|
||||||
assert model is not None
|
assert model is not None
|
||||||
|
|
||||||
|
def test_transformer_convert_llama_q5(self):
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(llama_model_path,
|
||||||
|
load_in_low_bit="q5_0")
|
||||||
|
|
||||||
|
def test_transformer_convert_llama_q8(self):
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(llama_model_path,
|
||||||
|
load_in_low_bit="q8_0")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
pytest.main([__file__])
|
pytest.main([__file__])
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue