Transformer int4 add qtype, support q4_1 q5_0 q5_1 q8_0 (#8481)
* quant in Q4 5 8 * meet code review * update readme * style * update * fix error * fix error * update * fix style * update * Update README.md * Add load_in_low_bit
This commit is contained in:
		
							parent
							
								
									db39d0a6b3
								
							
						
					
					
						commit
						cd7a980ec4
					
				
					 8 changed files with 120 additions and 51 deletions
				
			
		| 
						 | 
					@ -102,6 +102,11 @@ You may run the models using `transformers`-style API in `bigdl-llm`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  See the complete example [here](example/transformers/transformers_int4/transformers_int4_pipeline.py).  
 | 
					  See the complete example [here](example/transformers/transformers_int4/transformers_int4_pipeline.py).  
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Notice: For more quantized precision, you can use another parameter `load_in_low_bit`. `q4_0` and `q4_1` are INT4 quantization, `q5_0` and `q5_1` are INT5 quantization, `q8_0` is INT8 quantization. Like:
 | 
				
			||||||
 | 
					  ```python
 | 
				
			||||||
 | 
					  model = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_low_bit="q5_0")
 | 
				
			||||||
 | 
					  ```
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
- ##### Using native INT4 format
 | 
					- ##### Using native INT4 format
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  You may also convert Hugging Face *Transformers* models into native INT4 format for maximum performance as follows.
 | 
					  You may also convert Hugging Face *Transformers* models into native INT4 format for maximum performance as follows.
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -955,28 +955,49 @@ _lib.llama_print_system_info.restype = c_char_p
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# GGML API
 | 
					# GGML API
 | 
				
			||||||
def ggml_quantize_q4_0(
 | 
					def ggml_quantize_tensor(
 | 
				
			||||||
    src,  # type: ctypes.Array[ctypes.c_float] # type: ignore
 | 
					    src,  # type: ctypes.Array[ctypes.c_float] # type: ignore
 | 
				
			||||||
    dst: ctypes.c_void_p,
 | 
					    dst: ctypes.c_void_p,
 | 
				
			||||||
 | 
					    qtype: ctypes.c_int,
 | 
				
			||||||
    n: ctypes.c_int,
 | 
					    n: ctypes.c_int,
 | 
				
			||||||
    k: ctypes.c_int,
 | 
					    k: ctypes.c_int,
 | 
				
			||||||
    hist,  # type: ctypes.Array[ctypes.c_int64] # type: ignore
 | 
					    hist,  # type: ctypes.Array[ctypes.c_int64] # type: ignore
 | 
				
			||||||
) -> int:
 | 
					) -> int:
 | 
				
			||||||
    return _lib.ggml_quantize_q4_0(src, dst, n, k, hist)
 | 
					    return _lib.ggml_quantize_tensor(src, dst, qtype, n, k, hist)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
_lib.ggml_quantize_q4_0.argtypes = [
 | 
					_lib.ggml_quantize_tensor.argtypes = [
 | 
				
			||||||
    ctypes.POINTER(ctypes.c_float),
 | 
					    ctypes.POINTER(ctypes.c_float),
 | 
				
			||||||
    ctypes.c_void_p,
 | 
					    ctypes.c_void_p,
 | 
				
			||||||
    ctypes.c_int,
 | 
					    ctypes.c_int,
 | 
				
			||||||
    ctypes.c_int,
 | 
					    ctypes.c_int,
 | 
				
			||||||
 | 
					    ctypes.c_int,
 | 
				
			||||||
    ctypes.POINTER(ctypes.c_int64),
 | 
					    ctypes.POINTER(ctypes.c_int64),
 | 
				
			||||||
]
 | 
					]
 | 
				
			||||||
_lib.ggml_quantize_q4_0.restype = ctypes.c_size_t
 | 
					_lib.ggml_quantize_tensor.restype = ctypes.c_size_t
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def ggml_type_size(qtype: ctypes.c_int) -> int:
 | 
				
			||||||
 | 
					    return _lib.ggml_type_size(qtype)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.ggml_type_size.argtypes = [
 | 
				
			||||||
 | 
					    ctypes.c_int,
 | 
				
			||||||
 | 
					]
 | 
				
			||||||
 | 
					_lib.ggml_type_size.restype = ctypes.c_int
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def ggml_qk_size(qtype: ctypes.c_int) -> int:
 | 
				
			||||||
 | 
					    return _lib.ggml_qk_size(qtype)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_lib.ggml_qk_size.argtypes = [
 | 
				
			||||||
 | 
					    ctypes.c_int,
 | 
				
			||||||
 | 
					]
 | 
				
			||||||
 | 
					_lib.ggml_qk_size.restype = ctypes.c_int
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def ggml_compute_forward_mul_mat_q_fp32(src_0_ne,  # type: ctypes.Array[ctypes.c_int64]
 | 
					def ggml_compute_forward_mul_mat_q_fp32(src_0_ne,  # type: ctypes.Array[ctypes.c_int64]
 | 
				
			||||||
                                        src_0_data,  # type: ctypes.c_void_p
 | 
					                                        src_0_data,  # type: ctypes.c_void_p
 | 
				
			||||||
 | 
					                                        src_0_qtype,  # type: int
 | 
				
			||||||
                                        src_1_ne,  # type: ctypes.Array[ctypes.c_int64]
 | 
					                                        src_1_ne,  # type: ctypes.Array[ctypes.c_int64]
 | 
				
			||||||
                                        src_1_data,  # type: ctypes.c_void_p
 | 
					                                        src_1_data,  # type: ctypes.c_void_p
 | 
				
			||||||
                                        result,  # type: ctypes.c_void_p
 | 
					                                        result,  # type: ctypes.c_void_p
 | 
				
			||||||
| 
						 | 
					@ -991,6 +1012,7 @@ def ggml_compute_forward_mul_mat_q_fp32(src_0_ne,  # type: ctypes.Array[ctypes.c
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    return _lib.ggml_compute_forward_mul_mat_q_fp32(src_0_ne,
 | 
					    return _lib.ggml_compute_forward_mul_mat_q_fp32(src_0_ne,
 | 
				
			||||||
                                                    src_0_data,
 | 
					                                                    src_0_data,
 | 
				
			||||||
 | 
					                                                    src_0_qtype,
 | 
				
			||||||
                                                    src_1_ne,
 | 
					                                                    src_1_ne,
 | 
				
			||||||
                                                    src_1_data,
 | 
					                                                    src_1_data,
 | 
				
			||||||
                                                    result)
 | 
					                                                    result)
 | 
				
			||||||
| 
						 | 
					@ -999,6 +1021,7 @@ def ggml_compute_forward_mul_mat_q_fp32(src_0_ne,  # type: ctypes.Array[ctypes.c
 | 
				
			||||||
_lib.ggml_compute_forward_mul_mat_q_fp32.argtypes = [
 | 
					_lib.ggml_compute_forward_mul_mat_q_fp32.argtypes = [
 | 
				
			||||||
    ctypes.POINTER(ctypes.c_int64),
 | 
					    ctypes.POINTER(ctypes.c_int64),
 | 
				
			||||||
    ctypes.c_void_p,
 | 
					    ctypes.c_void_p,
 | 
				
			||||||
 | 
					    ctypes.c_int,
 | 
				
			||||||
    ctypes.POINTER(ctypes.c_int64),
 | 
					    ctypes.POINTER(ctypes.c_int64),
 | 
				
			||||||
    ctypes.c_void_p,
 | 
					    ctypes.c_void_p,
 | 
				
			||||||
    ctypes.c_void_p
 | 
					    ctypes.c_void_p
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -24,6 +24,13 @@ from pathlib import Path
 | 
				
			||||||
dirname, _ = os.path.split(os.path.abspath(__file__))
 | 
					dirname, _ = os.path.split(os.path.abspath(__file__))
 | 
				
			||||||
libs_dirname = os.path.dirname(dirname)
 | 
					libs_dirname = os.path.dirname(dirname)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# ggml quantized tensor type, this is different from below file quantized type(_quantize_type)
 | 
				
			||||||
 | 
					ggml_tensor_qtype = {"q4_0": 2,
 | 
				
			||||||
 | 
					                     "q4_1": 3,
 | 
				
			||||||
 | 
					                     "q5_0": 6,
 | 
				
			||||||
 | 
					                     "q5_1": 7,
 | 
				
			||||||
 | 
					                     "q8_0": 8}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
_llama_quantize_type = {"q4_0": 2,
 | 
					_llama_quantize_type = {"q4_0": 2,
 | 
				
			||||||
                        "q4_1": 3,
 | 
					                        "q4_1": 3,
 | 
				
			||||||
                        "q5_0": 8,
 | 
					                        "q5_0": 8,
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -14,6 +14,6 @@
 | 
				
			||||||
# limitations under the License.
 | 
					# limitations under the License.
 | 
				
			||||||
#
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from .convert import ggml_convert_int4
 | 
					from .convert import ggml_convert_quant
 | 
				
			||||||
from .model import AutoModelForCausalLM, AutoModel
 | 
					from .model import AutoModelForCausalLM, AutoModel
 | 
				
			||||||
from .modelling_bigdl import BigdlNativeForCausalLM
 | 
					from .modelling_bigdl import BigdlNativeForCausalLM
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -37,12 +37,12 @@
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
import torch.nn as nn
 | 
					import torch.nn as nn
 | 
				
			||||||
from accelerate import init_empty_weights
 | 
					from accelerate import init_empty_weights
 | 
				
			||||||
from bigdl.llm.transformers.linear_int4 import LinearInt4, ParamsInt4
 | 
					from bigdl.llm.transformers.linear_quant import LinearQuant, ParamsQuant
 | 
				
			||||||
import warnings
 | 
					import warnings
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def _replace_with_int4_linear(model, modules_to_not_convert=None,
 | 
					def _replace_with_quant_linear(model, qtype, modules_to_not_convert=None,
 | 
				
			||||||
                              current_key_name=None, convert_shape_only=False):
 | 
					                               current_key_name=None, convert_shape_only=False):
 | 
				
			||||||
    has_been_replaced = False
 | 
					    has_been_replaced = False
 | 
				
			||||||
    for name, module in model.named_children():
 | 
					    for name, module in model.named_children():
 | 
				
			||||||
        if current_key_name is None:
 | 
					        if current_key_name is None:
 | 
				
			||||||
| 
						 | 
					@ -53,19 +53,22 @@ def _replace_with_int4_linear(model, modules_to_not_convert=None,
 | 
				
			||||||
            if not any(key in ".".join(current_key_name) for key in modules_to_not_convert):
 | 
					            if not any(key in ".".join(current_key_name) for key in modules_to_not_convert):
 | 
				
			||||||
                with init_empty_weights():
 | 
					                with init_empty_weights():
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                    new_linear = LinearInt4(
 | 
					                    new_linear = LinearQuant(
 | 
				
			||||||
                        module.in_features,
 | 
					                        module.in_features,
 | 
				
			||||||
                        module.out_features,
 | 
					                        module.out_features,
 | 
				
			||||||
 | 
					                        qtype,
 | 
				
			||||||
                        module.bias is not None,
 | 
					                        module.bias is not None,
 | 
				
			||||||
                    )
 | 
					                    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                    # Copy the weights
 | 
					                    # Copy the weights
 | 
				
			||||||
                    paramsint4 = ParamsInt4(data=module.weight.data,
 | 
					                    paramsQuant = ParamsQuant(data=module.weight.data,
 | 
				
			||||||
                                            requires_grad=False,
 | 
					                                              requires_grad=False,
 | 
				
			||||||
                                            quantized=False,
 | 
					                                              quantized=False,
 | 
				
			||||||
                                            convert_shape_only=convert_shape_only,
 | 
					                                              convert_shape_only=convert_shape_only,
 | 
				
			||||||
                                            _shape=None).to("cpu")
 | 
					                                              _shape=None,
 | 
				
			||||||
                    new_linear._parameters['weight'] = paramsint4
 | 
					                                              qtype=qtype).to("cpu")
 | 
				
			||||||
 | 
					                    new_linear._parameters['weight'] = paramsQuant
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                    if module.bias is not None:
 | 
					                    if module.bias is not None:
 | 
				
			||||||
                        new_linear._parameters['bias'] = nn.Parameter(module.bias.data).to("cpu")
 | 
					                        new_linear._parameters['bias'] = nn.Parameter(module.bias.data).to("cpu")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -78,18 +81,19 @@ def _replace_with_int4_linear(model, modules_to_not_convert=None,
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # Remove the last key for recursion
 | 
					        # Remove the last key for recursion
 | 
				
			||||||
        if len(list(module.children())) > 0:
 | 
					        if len(list(module.children())) > 0:
 | 
				
			||||||
            _, has_been_replaced = _replace_with_int4_linear(
 | 
					            _, has_been_replaced = _replace_with_quant_linear(
 | 
				
			||||||
                module,
 | 
					                module,
 | 
				
			||||||
 | 
					                qtype,
 | 
				
			||||||
                modules_to_not_convert,
 | 
					                modules_to_not_convert,
 | 
				
			||||||
                current_key_name,
 | 
					                current_key_name,
 | 
				
			||||||
            )
 | 
					            )
 | 
				
			||||||
    return model, has_been_replaced
 | 
					    return model, has_been_replaced
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def ggml_convert_int4(model, convert_shape_only=False):
 | 
					def ggml_convert_quant(model, qtype, convert_shape_only=False):
 | 
				
			||||||
    modules_to_not_convert = []  # ["lm_head"]
 | 
					    modules_to_not_convert = []  # ["lm_head"]
 | 
				
			||||||
    model, has_been_replaced = _replace_with_int4_linear(
 | 
					    model, has_been_replaced = _replace_with_quant_linear(
 | 
				
			||||||
        model, modules_to_not_convert, None, convert_shape_only=convert_shape_only
 | 
					        model, qtype, modules_to_not_convert, None, convert_shape_only=convert_shape_only
 | 
				
			||||||
    )
 | 
					    )
 | 
				
			||||||
    if not has_been_replaced:
 | 
					    if not has_been_replaced:
 | 
				
			||||||
        warnings.warn(
 | 
					        warnings.warn(
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -55,12 +55,10 @@ import bigdl.llm.ggml.model.llama.llama_cpp as ggml
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
import ctypes
 | 
					import ctypes
 | 
				
			||||||
 | 
					
 | 
				
			||||||
QK = 64  # todo read this value from libllama.so
 | 
					 | 
				
			||||||
scale_size_in_bytes = 4
 | 
					 | 
				
			||||||
block_size_in_bytes = QK // 2 + scale_size_in_bytes
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def ggml_convert_quant(tensor: torch.Tensor, qtype: int, convert_shape_only=False):
 | 
				
			||||||
def ggml_convert_int4(tensor: torch.Tensor, convert_shape_only=False):
 | 
					    QK = ggml.ggml_qk_size(qtype)
 | 
				
			||||||
 | 
					    block_size_in_bytes = ggml.ggml_type_size(qtype)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    invalidInputError(tensor.dtype == torch.float,
 | 
					    invalidInputError(tensor.dtype == torch.float,
 | 
				
			||||||
                      "Input tensor must be float32")
 | 
					                      "Input tensor must be float32")
 | 
				
			||||||
| 
						 | 
					@ -80,13 +78,19 @@ def ggml_convert_int4(tensor: torch.Tensor, convert_shape_only=False):
 | 
				
			||||||
    hist = (ctypes.c_int64 * 16)()
 | 
					    hist = (ctypes.c_int64 * 16)()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if not convert_shape_only:
 | 
					    if not convert_shape_only:
 | 
				
			||||||
        ggml.ggml_quantize_q4_0(src, dst, n, k, hist)
 | 
					        ggml.ggml_quantize_tensor(src, dst, qtype, n, k, hist)
 | 
				
			||||||
    return dst_tensor
 | 
					    return dst_tensor
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class ParamsInt4(torch.nn.Parameter):
 | 
					class ParamsQuant(torch.nn.Parameter):
 | 
				
			||||||
    def __new__(cls, data=None, requires_grad=True, old_data=None,
 | 
					    def __new__(cls,
 | 
				
			||||||
                quantized=False, _shape=None, convert_shape_only=False):
 | 
					                data=None,
 | 
				
			||||||
 | 
					                requires_grad=True,
 | 
				
			||||||
 | 
					                old_data=None,
 | 
				
			||||||
 | 
					                quantized=False,
 | 
				
			||||||
 | 
					                _shape=None,
 | 
				
			||||||
 | 
					                convert_shape_only=False,
 | 
				
			||||||
 | 
					                qtype=None):
 | 
				
			||||||
        if data is None:
 | 
					        if data is None:
 | 
				
			||||||
            data = torch.empty(0)
 | 
					            data = torch.empty(0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -95,14 +99,16 @@ class ParamsInt4(torch.nn.Parameter):
 | 
				
			||||||
        self.quantized = quantized
 | 
					        self.quantized = quantized
 | 
				
			||||||
        self._shape = _shape
 | 
					        self._shape = _shape
 | 
				
			||||||
        self.convert_shape_only = convert_shape_only
 | 
					        self.convert_shape_only = convert_shape_only
 | 
				
			||||||
 | 
					        self.qtype = qtype
 | 
				
			||||||
        return self
 | 
					        return self
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def quantize(self, device):
 | 
					    def quantize(self, device):
 | 
				
			||||||
        if not self.quantized:
 | 
					        if not self.quantized:
 | 
				
			||||||
            w = self.data.contiguous().float()
 | 
					            w = self.data.contiguous().float()
 | 
				
			||||||
            # self.old_data = self.data
 | 
					            # self.old_data = self.data
 | 
				
			||||||
            w_4bit = ggml_convert_int4(w, convert_shape_only=self.convert_shape_only)
 | 
					            w_quantized = ggml_convert_quant(w, self.qtype,
 | 
				
			||||||
            self.data = w_4bit
 | 
					                                             convert_shape_only=self.convert_shape_only)
 | 
				
			||||||
 | 
					            self.data = w_quantized
 | 
				
			||||||
            self.quantized = True
 | 
					            self.quantized = True
 | 
				
			||||||
            self._shape = w.shape
 | 
					            self._shape = w.shape
 | 
				
			||||||
        return self
 | 
					        return self
 | 
				
			||||||
| 
						 | 
					@ -129,17 +135,21 @@ class ParamsInt4(torch.nn.Parameter):
 | 
				
			||||||
        if (device is not None and device.type == "cpu" and self.data.device.type == "cpu"):
 | 
					        if (device is not None and device.type == "cpu" and self.data.device.type == "cpu"):
 | 
				
			||||||
            return self.quantize(device)
 | 
					            return self.quantize(device)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            new_param = ParamsInt4(super().to(device=device,
 | 
					            new_param = ParamsQuant(super().to(device=device,
 | 
				
			||||||
                                              dtype=dtype,
 | 
					                                               dtype=dtype,
 | 
				
			||||||
                                              non_blocking=non_blocking),
 | 
					                                               non_blocking=non_blocking),
 | 
				
			||||||
                                   requires_grad=self.requires_grad,
 | 
					                                    requires_grad=self.requires_grad,
 | 
				
			||||||
                                   quantized=self.quantized,
 | 
					                                    quantized=self.quantized,
 | 
				
			||||||
                                   _shape=self._shape)
 | 
					                                    _shape=self._shape,
 | 
				
			||||||
 | 
					                                    qtype=self.qtype)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            return new_param
 | 
					            return new_param
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def ggml_matmul_src1_x_src0_t(src0: torch.Tensor, src1: torch.Tensor, src0_shape: torch.Size):
 | 
					def ggml_matmul_src1_x_src0_t(src0: torch.Tensor,
 | 
				
			||||||
 | 
					                              src1: torch.Tensor,
 | 
				
			||||||
 | 
					                              src0_shape: torch.Size,
 | 
				
			||||||
 | 
					                              src0_qtype: int):
 | 
				
			||||||
    if src1.dtype != torch.float32:
 | 
					    if src1.dtype != torch.float32:
 | 
				
			||||||
        src1 = src1.float()
 | 
					        src1 = src1.float()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -165,6 +175,7 @@ def ggml_matmul_src1_x_src0_t(src0: torch.Tensor, src1: torch.Tensor, src0_shape
 | 
				
			||||||
        # ctx=ctx_p,
 | 
					        # ctx=ctx_p,
 | 
				
			||||||
        src_0_ne=src_0_ne,
 | 
					        src_0_ne=src_0_ne,
 | 
				
			||||||
        src_0_data=src_0_data,
 | 
					        src_0_data=src_0_data,
 | 
				
			||||||
 | 
					        src_0_qtype=src0_qtype,
 | 
				
			||||||
        src_1_ne=src_1_ne,
 | 
					        src_1_ne=src_1_ne,
 | 
				
			||||||
        src_1_data=src_1_data,
 | 
					        src_1_data=src_1_data,
 | 
				
			||||||
        result=result_ptr,
 | 
					        result=result_ptr,
 | 
				
			||||||
| 
						 | 
					@ -173,15 +184,16 @@ def ggml_matmul_src1_x_src0_t(src0: torch.Tensor, src1: torch.Tensor, src0_shape
 | 
				
			||||||
    return result_t
 | 
					    return result_t
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class LinearInt4(nn.Linear):
 | 
					class LinearQuant(nn.Linear):
 | 
				
			||||||
    def __init__(self, input_features, output_features, bias=True):
 | 
					    def __init__(self, input_features, output_features, qtype, bias=True):
 | 
				
			||||||
        super().__init__(input_features, output_features, bias)
 | 
					        super().__init__(input_features, output_features, bias)
 | 
				
			||||||
        self.weight = ParamsInt4(self.weight.data, requires_grad=False,
 | 
					        self.weight = ParamsQuant(self.weight.data, requires_grad=False,
 | 
				
			||||||
                                 old_data=self.weight.data,
 | 
					                                  old_data=self.weight.data,
 | 
				
			||||||
                                 quantized=False, _shape=None)
 | 
					                                  quantized=False, _shape=None, qtype=qtype)
 | 
				
			||||||
        self.in_len = input_features
 | 
					        self.in_len = input_features
 | 
				
			||||||
        self.out_len = output_features
 | 
					        self.out_len = output_features
 | 
				
			||||||
        self.weight_shape = (self.out_len, self.in_len)
 | 
					        self.weight_shape = (self.out_len, self.in_len)
 | 
				
			||||||
 | 
					        self.qtype = qtype
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def forward(self, x: torch.Tensor):
 | 
					    def forward(self, x: torch.Tensor):
 | 
				
			||||||
        # weights are cast automatically as Int8Params, but the bias has to be cast manually
 | 
					        # weights are cast automatically as Int8Params, but the bias has to be cast manually
 | 
				
			||||||
| 
						 | 
					@ -193,7 +205,7 @@ class LinearInt4(nn.Linear):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        x0 = self.weight.data
 | 
					        x0 = self.weight.data
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        result = ggml_matmul_src1_x_src0_t(x0, x, self.weight_shape)
 | 
					        result = ggml_matmul_src1_x_src0_t(x0, x, self.weight_shape, self.qtype)
 | 
				
			||||||
        new_shape = x_shape[:-1] + (self.out_len,)
 | 
					        new_shape = x_shape[:-1] + (self.out_len,)
 | 
				
			||||||
        result = result.view(new_shape)
 | 
					        result = result.view(new_shape)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -17,6 +17,8 @@
 | 
				
			||||||
import transformers
 | 
					import transformers
 | 
				
			||||||
from transformers.configuration_utils import PretrainedConfig
 | 
					from transformers.configuration_utils import PretrainedConfig
 | 
				
			||||||
from .utils import extract_local_archive_file, load_state_dict, load
 | 
					from .utils import extract_local_archive_file, load_state_dict, load
 | 
				
			||||||
 | 
					from bigdl.llm.ggml.quantize import ggml_tensor_qtype
 | 
				
			||||||
 | 
					from bigdl.llm.utils.common import invalidInputError
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class _BaseAutoModelClass:
 | 
					class _BaseAutoModelClass:
 | 
				
			||||||
| 
						 | 
					@ -28,8 +30,17 @@ class _BaseAutoModelClass:
 | 
				
			||||||
                        *args,
 | 
					                        *args,
 | 
				
			||||||
                        **kwargs):
 | 
					                        **kwargs):
 | 
				
			||||||
        load_in_4bit = kwargs.pop("load_in_4bit", False)
 | 
					        load_in_4bit = kwargs.pop("load_in_4bit", False)
 | 
				
			||||||
 | 
					        qtype = 0
 | 
				
			||||||
        if load_in_4bit:
 | 
					        if load_in_4bit:
 | 
				
			||||||
            kwargs["low_cpu_mem_usage"] = True
 | 
					            kwargs["low_cpu_mem_usage"] = True
 | 
				
			||||||
 | 
					            qtype = ggml_tensor_qtype['q4_0']
 | 
				
			||||||
 | 
					        load_in_low_bit = kwargs.pop("load_in_low_bit", "").lower()
 | 
				
			||||||
 | 
					        if load_in_low_bit:
 | 
				
			||||||
 | 
					            kwargs["low_cpu_mem_usage"] = True
 | 
				
			||||||
 | 
					            invalidInputError(qtype in ggml_tensor_qtype,
 | 
				
			||||||
 | 
					                              f"Unknown load_in_low_bit value: {qtype},"
 | 
				
			||||||
 | 
					                              f" excepted q4_0, q4_1, q5_0, q5_1, q8_0.")
 | 
				
			||||||
 | 
					            qtype = ggml_tensor_qtype[load_in_low_bit]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        subfolder = kwargs.get("subfolder", "")
 | 
					        subfolder = kwargs.get("subfolder", "")
 | 
				
			||||||
        variant = kwargs.get("variant", None)
 | 
					        variant = kwargs.get("variant", None)
 | 
				
			||||||
| 
						 | 
					@ -58,10 +69,10 @@ class _BaseAutoModelClass:
 | 
				
			||||||
        # be recorded in AutoConfig,
 | 
					        # be recorded in AutoConfig,
 | 
				
			||||||
        # and this operation is not included in the core Hugging Face infrastructure.
 | 
					        # and this operation is not included in the core Hugging Face infrastructure.
 | 
				
			||||||
        if bigdl_transformers_int4:
 | 
					        if bigdl_transformers_int4:
 | 
				
			||||||
            from .convert import ggml_convert_int4
 | 
					            from .convert import ggml_convert_quant
 | 
				
			||||||
            # We forcefully modify the model's definition
 | 
					            # We forcefully modify the model's definition
 | 
				
			||||||
            # and the tensor shape of int4 weights without quantization.
 | 
					            # and the tensor shape of int4 weights without quantization.
 | 
				
			||||||
            model = ggml_convert_int4(model, convert_shape_only=True)
 | 
					            model = ggml_convert_quant(model, convert_shape_only=True)
 | 
				
			||||||
            # Load the quantized model at last.
 | 
					            # Load the quantized model at last.
 | 
				
			||||||
            archive_file = extract_local_archive_file(pretrained_model_name_or_path,
 | 
					            archive_file = extract_local_archive_file(pretrained_model_name_or_path,
 | 
				
			||||||
                                                      subfolder,
 | 
					                                                      subfolder,
 | 
				
			||||||
| 
						 | 
					@ -69,10 +80,10 @@ class _BaseAutoModelClass:
 | 
				
			||||||
            state_dict = load_state_dict(archive_file)
 | 
					            state_dict = load_state_dict(archive_file)
 | 
				
			||||||
            load(model, state_dict)
 | 
					            load(model, state_dict)
 | 
				
			||||||
            del state_dict
 | 
					            del state_dict
 | 
				
			||||||
        elif load_in_4bit:
 | 
					        elif qtype:
 | 
				
			||||||
            from .convert import ggml_convert_int4
 | 
					            from .convert import ggml_convert_quant
 | 
				
			||||||
            model = model.to("cpu")
 | 
					            model = model.to("cpu")
 | 
				
			||||||
            model = ggml_convert_int4(model)
 | 
					            model = ggml_convert_quant(model, qtype)
 | 
				
			||||||
            model.config.update({"bigdl_transformers_int4": True})
 | 
					            model.config.update({"bigdl_transformers_int4": True})
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        return model
 | 
					        return model
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -65,13 +65,20 @@ class TestConvertModel(TestCase):
 | 
				
			||||||
        assert os.path.isfile(converted_model_path)
 | 
					        assert os.path.isfile(converted_model_path)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def test_transformer_convert_llama(self):
 | 
					    def test_transformer_convert_llama(self):
 | 
				
			||||||
        model = AutoModelForCausalLM.from_pretrained(llama_model_path,
 | 
					        model = AutoModelForCausalLM.from_pretrained(llama_model_path, load_in_4bit=True)
 | 
				
			||||||
                                                     load_in_4bit=True)
 | 
					 | 
				
			||||||
        tempdir = tempfile.mkdtemp(dir=output_dir)
 | 
					        tempdir = tempfile.mkdtemp(dir=output_dir)
 | 
				
			||||||
        model.save_pretrained(tempdir)
 | 
					        model.save_pretrained(tempdir)
 | 
				
			||||||
        model = AutoModelForCausalLM.from_pretrained(tempdir)
 | 
					        model = AutoModelForCausalLM.from_pretrained(tempdir)
 | 
				
			||||||
        assert model is not None
 | 
					        assert model is not None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def test_transformer_convert_llama_q5(self):
 | 
				
			||||||
 | 
					        model = AutoModelForCausalLM.from_pretrained(llama_model_path,
 | 
				
			||||||
 | 
					                                                     load_in_low_bit="q5_0")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def test_transformer_convert_llama_q8(self):
 | 
				
			||||||
 | 
					        model = AutoModelForCausalLM.from_pretrained(llama_model_path,
 | 
				
			||||||
 | 
					                                                     load_in_low_bit="q8_0")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__ == '__main__':
 | 
					if __name__ == '__main__':
 | 
				
			||||||
    pytest.main([__file__])
 | 
					    pytest.main([__file__])
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue