support phi-3 vision (#11101)
This commit is contained in:
parent
15d906a97b
commit
cd4dff09ee
2 changed files with 51 additions and 6 deletions
|
|
@ -706,7 +706,7 @@ def _optimize_pre(model):
|
||||||
if model.config.model_type == "phi":
|
if model.config.model_type == "phi":
|
||||||
from ipex_llm.transformers.models.phi import merge_qkv
|
from ipex_llm.transformers.models.phi import merge_qkv
|
||||||
model.apply(merge_qkv)
|
model.apply(merge_qkv)
|
||||||
if model.config.model_type == "phi3":
|
if model.config.model_type in ["phi3", "phi3_v"]:
|
||||||
from ipex_llm.transformers.models.phi3 import pre_compute_inv_freq
|
from ipex_llm.transformers.models.phi3 import pre_compute_inv_freq
|
||||||
model.apply(pre_compute_inv_freq)
|
model.apply(pre_compute_inv_freq)
|
||||||
from ipex_llm.transformers.models.phi3 import split_mlp
|
from ipex_llm.transformers.models.phi3 import split_mlp
|
||||||
|
|
@ -1510,7 +1510,7 @@ def _optimize_post(model, lightweight_bmm=False):
|
||||||
from ipex_llm.transformers.models.phi import model_forward
|
from ipex_llm.transformers.models.phi import model_forward
|
||||||
convert_forward(model, module.PhiAttention, attention_forward)
|
convert_forward(model, module.PhiAttention, attention_forward)
|
||||||
convert_forward(model, module.PhiModel, model_forward)
|
convert_forward(model, module.PhiModel, model_forward)
|
||||||
elif model.config.model_type == "phi3":
|
elif model.config.model_type in ["phi3", "phi3_v"]:
|
||||||
# for phi-3
|
# for phi-3
|
||||||
modeling_module_name = model.__class__.__module__
|
modeling_module_name = model.__class__.__module__
|
||||||
module = importlib.import_module(modeling_module_name)
|
module = importlib.import_module(modeling_module_name)
|
||||||
|
|
@ -1518,11 +1518,16 @@ def _optimize_post(model, lightweight_bmm=False):
|
||||||
convert_forward(model, module.Phi3Attention, attention_forward)
|
convert_forward(model, module.Phi3Attention, attention_forward)
|
||||||
from ipex_llm.transformers.models.phi3 import mlp_forward
|
from ipex_llm.transformers.models.phi3 import mlp_forward
|
||||||
convert_forward(model, module.Phi3MLP, mlp_forward)
|
convert_forward(model, module.Phi3MLP, mlp_forward)
|
||||||
from ipex_llm.transformers.models.phi3 import model_forward_wrapper
|
|
||||||
model_forward = model_forward_wrapper(module.Phi3Model.forward)
|
|
||||||
convert_forward(model, module.Phi3Model, model_forward)
|
|
||||||
from ipex_llm.transformers.models.phi3 import phi3_rms_norm_forward
|
from ipex_llm.transformers.models.phi3 import phi3_rms_norm_forward
|
||||||
convert_forward(model, module.Phi3RMSNorm, phi3_rms_norm_forward)
|
convert_forward(model, module.Phi3RMSNorm, phi3_rms_norm_forward)
|
||||||
|
if model.config.model_type == "phi3":
|
||||||
|
from ipex_llm.transformers.models.phi3 import phi3_model_forward_wrapper
|
||||||
|
model_forward = phi3_model_forward_wrapper(module.Phi3Model.forward)
|
||||||
|
convert_forward(model, module.Phi3Model, model_forward)
|
||||||
|
else:
|
||||||
|
from ipex_llm.transformers.models.phi3 import phi3v_model_forward_wrapper
|
||||||
|
model_forward = phi3v_model_forward_wrapper(module.Phi3VModel.forward)
|
||||||
|
convert_forward(model, module.Phi3VModel, model_forward)
|
||||||
elif model.config.model_type == 'yuan':
|
elif model.config.model_type == 'yuan':
|
||||||
modeling_module_name = model.__class__.__module__
|
modeling_module_name = model.__class__.__module__
|
||||||
module = importlib.import_module(modeling_module_name)
|
module = importlib.import_module(modeling_module_name)
|
||||||
|
|
|
||||||
|
|
@ -215,7 +215,7 @@ def mlp_forward(
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def model_forward_wrapper(origin_model_forward):
|
def phi3_model_forward_wrapper(origin_model_forward):
|
||||||
def model_forward(
|
def model_forward(
|
||||||
self,
|
self,
|
||||||
input_ids: torch.LongTensor = None,
|
input_ids: torch.LongTensor = None,
|
||||||
|
|
@ -251,6 +251,46 @@ def model_forward_wrapper(origin_model_forward):
|
||||||
return model_forward
|
return model_forward
|
||||||
|
|
||||||
|
|
||||||
|
def phi3v_model_forward_wrapper(origin_model_forward):
|
||||||
|
def model_forward(
|
||||||
|
self,
|
||||||
|
input_ids: torch.LongTensor = None,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||||||
|
image_sizes: Optional[torch.LongTensor] = None,
|
||||||
|
use_cache: Optional[bool] = None,
|
||||||
|
output_attentions: Optional[bool] = None,
|
||||||
|
output_hidden_states: Optional[bool] = None,
|
||||||
|
return_dict: Optional[bool] = None,
|
||||||
|
):
|
||||||
|
# IPEX-LLM OPT: kv cache and quantize kv cache and sdp
|
||||||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||||
|
use_quantize_kv = use_quantize_kv_cache(self.layers[0].mlp.down_proj, input_ids)
|
||||||
|
if use_cache:
|
||||||
|
if use_quantize_kv and not isinstance(past_key_values, DynamicFp8Cache):
|
||||||
|
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
|
||||||
|
if not use_quantize_kv and not isinstance(past_key_values, DynamicNormalCache):
|
||||||
|
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
|
||||||
|
return origin_model_forward(
|
||||||
|
self=self,
|
||||||
|
input_ids=input_ids,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
past_key_values=past_key_values,
|
||||||
|
inputs_embeds=inputs_embeds,
|
||||||
|
pixel_values=pixel_values,
|
||||||
|
image_sizes=image_sizes,
|
||||||
|
use_cache=use_cache,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
output_hidden_states=output_hidden_states,
|
||||||
|
return_dict=return_dict,
|
||||||
|
)
|
||||||
|
return model_forward
|
||||||
|
|
||||||
|
|
||||||
def phi3_rms_norm_forward(self, hidden_states):
|
def phi3_rms_norm_forward(self, hidden_states):
|
||||||
if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
|
if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
|
||||||
import linear_q4_0
|
import linear_q4_0
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue