support phi-3 vision (#11101)

This commit is contained in:
Yishuo Wang 2024-05-22 17:43:50 +08:00 committed by GitHub
parent 15d906a97b
commit cd4dff09ee
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 51 additions and 6 deletions

View file

@ -706,7 +706,7 @@ def _optimize_pre(model):
if model.config.model_type == "phi":
from ipex_llm.transformers.models.phi import merge_qkv
model.apply(merge_qkv)
if model.config.model_type == "phi3":
if model.config.model_type in ["phi3", "phi3_v"]:
from ipex_llm.transformers.models.phi3 import pre_compute_inv_freq
model.apply(pre_compute_inv_freq)
from ipex_llm.transformers.models.phi3 import split_mlp
@ -1510,7 +1510,7 @@ def _optimize_post(model, lightweight_bmm=False):
from ipex_llm.transformers.models.phi import model_forward
convert_forward(model, module.PhiAttention, attention_forward)
convert_forward(model, module.PhiModel, model_forward)
elif model.config.model_type == "phi3":
elif model.config.model_type in ["phi3", "phi3_v"]:
# for phi-3
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
@ -1518,11 +1518,16 @@ def _optimize_post(model, lightweight_bmm=False):
convert_forward(model, module.Phi3Attention, attention_forward)
from ipex_llm.transformers.models.phi3 import mlp_forward
convert_forward(model, module.Phi3MLP, mlp_forward)
from ipex_llm.transformers.models.phi3 import model_forward_wrapper
model_forward = model_forward_wrapper(module.Phi3Model.forward)
convert_forward(model, module.Phi3Model, model_forward)
from ipex_llm.transformers.models.phi3 import phi3_rms_norm_forward
convert_forward(model, module.Phi3RMSNorm, phi3_rms_norm_forward)
if model.config.model_type == "phi3":
from ipex_llm.transformers.models.phi3 import phi3_model_forward_wrapper
model_forward = phi3_model_forward_wrapper(module.Phi3Model.forward)
convert_forward(model, module.Phi3Model, model_forward)
else:
from ipex_llm.transformers.models.phi3 import phi3v_model_forward_wrapper
model_forward = phi3v_model_forward_wrapper(module.Phi3VModel.forward)
convert_forward(model, module.Phi3VModel, model_forward)
elif model.config.model_type == 'yuan':
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)

View file

@ -215,7 +215,7 @@ def mlp_forward(
)
def model_forward_wrapper(origin_model_forward):
def phi3_model_forward_wrapper(origin_model_forward):
def model_forward(
self,
input_ids: torch.LongTensor = None,
@ -251,6 +251,46 @@ def model_forward_wrapper(origin_model_forward):
return model_forward
def phi3v_model_forward_wrapper(origin_model_forward):
def model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
# IPEX-LLM OPT: kv cache and quantize kv cache and sdp
use_cache = use_cache if use_cache is not None else self.config.use_cache
use_quantize_kv = use_quantize_kv_cache(self.layers[0].mlp.down_proj, input_ids)
if use_cache:
if use_quantize_kv and not isinstance(past_key_values, DynamicFp8Cache):
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
if not use_quantize_kv and not isinstance(past_key_values, DynamicNormalCache):
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
return origin_model_forward(
self=self,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
pixel_values=pixel_values,
image_sizes=image_sizes,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return model_forward
def phi3_rms_norm_forward(self, hidden_states):
if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
import linear_q4_0