ipex-llm 2.2.0 post-release update (#13053)
				
					
				
			* Update ollama/llama.cpp release link to 2.2.0 (#13052) * Post-update for releasing ipex-llm 2.2.0
This commit is contained in:
		
							parent
							
								
									ef852dcb4a
								
							
						
					
					
						commit
						cd0d4857b8
					
				
					 12 changed files with 22 additions and 18 deletions
				
			
		| 
						 | 
					@ -9,6 +9,7 @@
 | 
				
			||||||
> - ***70+ models** have been optimized/verified on `ipex-llm` (e.g., Llama, Phi, Mistral, Mixtral, DeepSeek, Qwen, ChatGLM, MiniCPM, Qwen-VL, MiniCPM-V and more), with state-of-art **LLM optimizations**, **XPU acceleration** and **low-bit (FP8/FP6/FP4/INT4) support**; see the complete list [here](#verified-models).*
 | 
					> - ***70+ models** have been optimized/verified on `ipex-llm` (e.g., Llama, Phi, Mistral, Mixtral, DeepSeek, Qwen, ChatGLM, MiniCPM, Qwen-VL, MiniCPM-V and more), with state-of-art **LLM optimizations**, **XPU acceleration** and **low-bit (FP8/FP6/FP4/INT4) support**; see the complete list [here](#verified-models).*
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Latest Update 🔥 
 | 
					## Latest Update 🔥 
 | 
				
			||||||
 | 
					- [2025/04] We released `ipex-llm 2.2.0`, which includes [Ollama Portable Zip and llama.cpp Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0).
 | 
				
			||||||
- [2025/03] We added support for **Gemma3** model in the latest [llama.cpp Portable Zip](https://github.com/intel/ipex-llm/issues/12963#issuecomment-2724032898).
 | 
					- [2025/03] We added support for **Gemma3** model in the latest [llama.cpp Portable Zip](https://github.com/intel/ipex-llm/issues/12963#issuecomment-2724032898).
 | 
				
			||||||
- [2025/03] We can now run **DeepSeek-R1-671B-Q4_K_M** with 1 or 2 Arc A770 on Xeon using the latest [llama.cpp Portable Zip](docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.md#flashmoe-for-deepseek-v3r1).
 | 
					- [2025/03] We can now run **DeepSeek-R1-671B-Q4_K_M** with 1 or 2 Arc A770 on Xeon using the latest [llama.cpp Portable Zip](docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.md#flashmoe-for-deepseek-v3r1).
 | 
				
			||||||
- [2025/02] We added support of [llama.cpp Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) for Intel **GPU** (both [Windows](docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.md#windows-quickstart) and [Linux](docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.md#linux-quickstart)) and **NPU** ([Windows](docs/mddocs/Quickstart/llama_cpp_npu_portable_zip_quickstart.md) only).
 | 
					- [2025/02] We added support of [llama.cpp Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) for Intel **GPU** (both [Windows](docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.md#windows-quickstart) and [Linux](docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.md#linux-quickstart)) and **NPU** ([Windows](docs/mddocs/Quickstart/llama_cpp_npu_portable_zip_quickstart.md) only).
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -9,6 +9,7 @@
 | 
				
			||||||
> - ***70+** 模型已经在 `ipex-llm` 上得到优化和验证(如 Llama, Phi, Mistral, Mixtral, DeepSeek, Qwen, ChatGLM, MiniCPM, Qwen-VL, MiniCPM-V 等), 以获得先进的 **大模型算法优化**, **XPU 加速** 以及 **低比特(FP8FP8/FP6/FP4/INT4)支持**;更多模型信息请参阅[这里](#模型验证)。*
 | 
					> - ***70+** 模型已经在 `ipex-llm` 上得到优化和验证(如 Llama, Phi, Mistral, Mixtral, DeepSeek, Qwen, ChatGLM, MiniCPM, Qwen-VL, MiniCPM-V 等), 以获得先进的 **大模型算法优化**, **XPU 加速** 以及 **低比特(FP8FP8/FP6/FP4/INT4)支持**;更多模型信息请参阅[这里](#模型验证)。*
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## 最新更新 🔥 
 | 
					## 最新更新 🔥 
 | 
				
			||||||
 | 
					- [2025/04] 发布 `ipex-llm 2.2.0`, 其中包括 [Ollama Portable Zip 和 llama.cpp Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0)。
 | 
				
			||||||
- [2025/03] 通过最新 [llama.cpp Portable Zip](https://github.com/intel/ipex-llm/issues/12963#issuecomment-2724032898) 可运行 **Gemma3** 模型。
 | 
					- [2025/03] 通过最新 [llama.cpp Portable Zip](https://github.com/intel/ipex-llm/issues/12963#issuecomment-2724032898) 可运行 **Gemma3** 模型。
 | 
				
			||||||
- [2025/03] 使用最新 [llama.cpp Portable Zip](docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.zh-CN.md#flashmoe-运行-deepseek-v3r1), 可以在 Xeon 上通过1到2张 Arc A770 GPU 运行 **DeepSeek-R1-671B-Q4_K_M**。
 | 
					- [2025/03] 使用最新 [llama.cpp Portable Zip](docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.zh-CN.md#flashmoe-运行-deepseek-v3r1), 可以在 Xeon 上通过1到2张 Arc A770 GPU 运行 **DeepSeek-R1-671B-Q4_K_M**。
 | 
				
			||||||
- [2025/02] 新增 [llama.cpp Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) 在 Intel **GPU** (包括 [Windows](docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.zh-CN.md#windows-用户指南) 和 [Linux](docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.zh-CN.md#linux-用户指南)) 和 **NPU** (仅 [Windows](docs/mddocs/Quickstart/llama_cpp_npu_portable_zip_quickstart.zh-CN.md)) 上直接**免安装运行 llama.cpp**。
 | 
					- [2025/02] 新增 [llama.cpp Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) 在 Intel **GPU** (包括 [Windows](docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.zh-CN.md#windows-用户指南) 和 [Linux](docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.zh-CN.md#linux-用户指南)) 和 **NPU** (仅 [Windows](docs/mddocs/Quickstart/llama_cpp_npu_portable_zip_quickstart.zh-CN.md)) 上直接**免安装运行 llama.cpp**。
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -3,7 +3,7 @@
 | 
				
			||||||
  <b>< English</b> | <a href='./llama_cpp_npu_portable_zip_quickstart.zh-CN.md'>中文</a> >
 | 
					  <b>< English</b> | <a href='./llama_cpp_npu_portable_zip_quickstart.zh-CN.md'>中文</a> >
 | 
				
			||||||
</p>
 | 
					</p>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
IPEX-LLM provides llama.cpp support for running GGUF models on Intel NPU. This guide demonstrates how to use [llama.cpp NPU portable zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) to directly run on Intel NPU (without the need of manual installations).
 | 
					IPEX-LLM provides llama.cpp support for running GGUF models on Intel NPU. This guide demonstrates how to use [llama.cpp NPU portable zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0) to directly run on Intel NPU (without the need of manual installations).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
> [!IMPORTANT]
 | 
					> [!IMPORTANT]
 | 
				
			||||||
> 
 | 
					> 
 | 
				
			||||||
| 
						 | 
					@ -29,7 +29,7 @@ Check your NPU driver version, and update it if needed:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Step 1: Download and Unzip
 | 
					## Step 1: Download and Unzip
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Download IPEX-LLM llama.cpp NPU portable zip for Windows users from the [link](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly).
 | 
					Download IPEX-LLM llama.cpp NPU portable zip for Windows users from the [link](https://github.com/intel/ipex-llm/releases/tag/v2.2.0).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Then, extract the zip file to a folder.
 | 
					Then, extract the zip file to a folder.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -3,7 +3,7 @@
 | 
				
			||||||
   < <a href='./llama_cpp_npu_portable_zip_quickstart.md'>English</a> | <b>中文</b> >
 | 
					   < <a href='./llama_cpp_npu_portable_zip_quickstart.md'>English</a> | <b>中文</b> >
 | 
				
			||||||
</p>
 | 
					</p>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
IPEX-LLM 提供了 llama.cpp 的相关支持以在 Intel NPU 上运行 GGUF 模型。本指南演示如何使用 [llama.cpp NPU portable zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) 在 Intel NPU 上直接免安装运行。
 | 
					IPEX-LLM 提供了 llama.cpp 的相关支持以在 Intel NPU 上运行 GGUF 模型。本指南演示如何使用 [llama.cpp NPU portable zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0) 在 Intel NPU 上直接免安装运行。
 | 
				
			||||||
 | 
					
 | 
				
			||||||
> [!IMPORTANT]
 | 
					> [!IMPORTANT]
 | 
				
			||||||
> 
 | 
					> 
 | 
				
			||||||
| 
						 | 
					@ -29,7 +29,7 @@ IPEX-LLM 提供了 llama.cpp 的相关支持以在 Intel NPU 上运行 GGUF 模
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## 步骤 1:下载和解压
 | 
					## 步骤 1:下载和解压
 | 
				
			||||||
 | 
					
 | 
				
			||||||
从此[链接](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly)下载 IPEX-LLM llama.cpp NPU portable zip。
 | 
					从此[链接](https://github.com/intel/ipex-llm/releases/tag/v2.2.0)下载 IPEX-LLM llama.cpp NPU portable zip。
 | 
				
			||||||
 | 
					
 | 
				
			||||||
然后,将 zip 文件解压到一个文件夹中。
 | 
					然后,将 zip 文件解压到一个文件夹中。
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -6,7 +6,7 @@
 | 
				
			||||||
>[!Important]
 | 
					>[!Important]
 | 
				
			||||||
> You can now run **DeepSeek-R1-671B-Q4_K_M** with 1 or 2 Arc A770 on Xeon using the latest *llama.cpp Portable Zip*; see the [guide](#flashmoe-for-deepseek-v3r1) below.
 | 
					> You can now run **DeepSeek-R1-671B-Q4_K_M** with 1 or 2 Arc A770 on Xeon using the latest *llama.cpp Portable Zip*; see the [guide](#flashmoe-for-deepseek-v3r1) below.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This guide demonstrates how to use [llama.cpp portable zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) to directly run llama.cpp on Intel GPU with `ipex-llm` (without the need of manual installations).
 | 
					This guide demonstrates how to use [llama.cpp portable zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0) to directly run llama.cpp on Intel GPU with `ipex-llm` (without the need of manual installations).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
> [!NOTE]
 | 
					> [!NOTE]
 | 
				
			||||||
> llama.cpp portable zip has been verified on:
 | 
					> llama.cpp portable zip has been verified on:
 | 
				
			||||||
| 
						 | 
					@ -42,7 +42,7 @@ We recommend updating your GPU driver to the [latest](https://www.intel.com/cont
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### Step 1: Download and Unzip
 | 
					### Step 1: Download and Unzip
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Download IPEX-LLM llama.cpp portable zip for Windows users from the [link](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly).
 | 
					Download IPEX-LLM llama.cpp portable zip for Windows users from the [link](https://github.com/intel/ipex-llm/releases/tag/v2.2.0).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Then, extract the zip file to a folder.
 | 
					Then, extract the zip file to a folder.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -126,7 +126,7 @@ Check your GPU driver version, and update it if needed; we recommend following [
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### Step 1: Download and Extract
 | 
					### Step 1: Download and Extract
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Download IPEX-LLM llama.cpp portable tgz for Linux users from the [link](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly).
 | 
					Download IPEX-LLM llama.cpp portable tgz for Linux users from the [link](https://github.com/intel/ipex-llm/releases/tag/v2.2.0).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Then, extract the tgz file to a folder.
 | 
					Then, extract the tgz file to a folder.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -3,7 +3,7 @@
 | 
				
			||||||
   < <a href='./llamacpp_portable_zip_gpu_quickstart.md'>English</a> | <b>中文</b> >
 | 
					   < <a href='./llamacpp_portable_zip_gpu_quickstart.md'>English</a> | <b>中文</b> >
 | 
				
			||||||
</p>
 | 
					</p>
 | 
				
			||||||
     
 | 
					     
 | 
				
			||||||
本指南演示如何使用 [llama.cpp portable zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) 通过 `ipex-llm` 在 Intel GPU 上直接免安装运行。
 | 
					本指南演示如何使用 [llama.cpp portable zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0) 通过 `ipex-llm` 在 Intel GPU 上直接免安装运行。
 | 
				
			||||||
 | 
					
 | 
				
			||||||
> [!Important]
 | 
					> [!Important]
 | 
				
			||||||
> 使用最新版 *llama.cpp Portable Zip* 可以在 Xeon 上通过1到2张 Arc A770 GPU 运行 **DeepSeek-R1-671B-Q4_K_M**;详见如下[指南](#flashmoe-运行-deepseek-v3r1)。
 | 
					> 使用最新版 *llama.cpp Portable Zip* 可以在 Xeon 上通过1到2张 Arc A770 GPU 运行 **DeepSeek-R1-671B-Q4_K_M**;详见如下[指南](#flashmoe-运行-deepseek-v3r1)。
 | 
				
			||||||
| 
						 | 
					@ -42,7 +42,7 @@
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 步骤 1:下载与解压
 | 
					### 步骤 1:下载与解压
 | 
				
			||||||
 | 
					
 | 
				
			||||||
对于 Windows 用户,请从此[链接](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly)下载 IPEX-LLM llama.cpp portable zip。
 | 
					对于 Windows 用户,请从此[链接](https://github.com/intel/ipex-llm/releases/tag/v2.2.0)下载 IPEX-LLM llama.cpp portable zip。
 | 
				
			||||||
 | 
					
 | 
				
			||||||
然后,将 zip 文件解压到一个文件夹中。
 | 
					然后,将 zip 文件解压到一个文件夹中。
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -128,7 +128,7 @@ llama_perf_context_print:       total time =   xxxxx.xx ms /  1385 tokens
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 步骤 1:下载与解压
 | 
					### 步骤 1:下载与解压
 | 
				
			||||||
 | 
					
 | 
				
			||||||
对于 Linux 用户,从此[链接](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly)下载 IPEX-LLM llama.cpp portable tgz。
 | 
					对于 Linux 用户,从此[链接](https://github.com/intel/ipex-llm/releases/tag/v2.2.0)下载 IPEX-LLM llama.cpp portable tgz。
 | 
				
			||||||
 | 
					
 | 
				
			||||||
然后,将 tgz 文件解压到一个文件夹中。
 | 
					然后,将 tgz 文件解压到一个文件夹中。
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -3,7 +3,7 @@
 | 
				
			||||||
  <b>< English</b> | <a href='./ollama_portable_zip_quickstart.zh-CN.md'>中文</a> >
 | 
					  <b>< English</b> | <a href='./ollama_portable_zip_quickstart.zh-CN.md'>中文</a> >
 | 
				
			||||||
</p>
 | 
					</p>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This guide demonstrates how to use [Ollama portable zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) to directly run Ollama on Intel GPU with `ipex-llm` (without the need of manual installations).
 | 
					This guide demonstrates how to use [Ollama portable zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0) to directly run Ollama on Intel GPU with `ipex-llm` (without the need of manual installations).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
> [!NOTE]
 | 
					> [!NOTE]
 | 
				
			||||||
> Ollama portable zip has been verified on:
 | 
					> Ollama portable zip has been verified on:
 | 
				
			||||||
| 
						 | 
					@ -43,7 +43,7 @@ We recommend updating your GPU driver to the [latest](https://www.intel.com/cont
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### Step 1: Download and Unzip
 | 
					### Step 1: Download and Unzip
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Download IPEX-LLM Ollama portable zip for Windows users from the [link](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly).
 | 
					Download IPEX-LLM Ollama portable zip for Windows users from the [link](https://github.com/intel/ipex-llm/releases/tag/v2.2.0).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Then, extract the zip file to a folder.
 | 
					Then, extract the zip file to a folder.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -74,7 +74,7 @@ Check your GPU driver version, and update it if needed; we recommend following [
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### Step 1: Download and Extract
 | 
					### Step 1: Download and Extract
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Download IPEX-LLM Ollama portable tgz for Ubuntu users from the [link](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly).
 | 
					Download IPEX-LLM Ollama portable tgz for Ubuntu users from the [link](https://github.com/intel/ipex-llm/releases/tag/v2.2.0).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Then open a terminal, extract the tgz file to a folder.
 | 
					Then open a terminal, extract the tgz file to a folder.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -3,7 +3,7 @@
 | 
				
			||||||
   < <a href='./ollama_portable_zip_quickstart.md'>English</a> | <b>中文</b> >
 | 
					   < <a href='./ollama_portable_zip_quickstart.md'>English</a> | <b>中文</b> >
 | 
				
			||||||
</p>
 | 
					</p>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
本指南演示如何使用 [Ollama portable zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) 通过 `ipex-llm` 在 Intel GPU 上直接免安装运行 Ollama。
 | 
					本指南演示如何使用 [Ollama portable zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0) 通过 `ipex-llm` 在 Intel GPU 上直接免安装运行 Ollama。
 | 
				
			||||||
 | 
					
 | 
				
			||||||
> [!NOTE]
 | 
					> [!NOTE]
 | 
				
			||||||
> Ollama portable zip 在如下设备上进行了验证:
 | 
					> Ollama portable zip 在如下设备上进行了验证:
 | 
				
			||||||
| 
						 | 
					@ -43,7 +43,7 @@
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 步骤 1:下载和解压
 | 
					### 步骤 1:下载和解压
 | 
				
			||||||
 | 
					
 | 
				
			||||||
从此[链接](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly)下载 IPEX-LLM Ollama portable zip。
 | 
					从此[链接](https://github.com/intel/ipex-llm/releases/tag/v2.2.0)下载 IPEX-LLM Ollama portable zip。
 | 
				
			||||||
 | 
					
 | 
				
			||||||
然后,将 zip 文件解压到一个文件夹中。
 | 
					然后,将 zip 文件解压到一个文件夹中。
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -76,7 +76,7 @@
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 步骤 1:下载和解压
 | 
					### 步骤 1:下载和解压
 | 
				
			||||||
 | 
					
 | 
				
			||||||
从此[链接](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly)下载 IPEX-LLM Ollama portable tgz。
 | 
					从此[链接](https://github.com/intel/ipex-llm/releases/tag/v2.2.0)下载 IPEX-LLM Ollama portable tgz。
 | 
				
			||||||
 | 
					
 | 
				
			||||||
然后,开启一个终端,输入如下命令将 tgz 文件解压到一个文件夹中。
 | 
					然后,开启一个终端,输入如下命令将 tgz 文件解压到一个文件夹中。
 | 
				
			||||||
```bash
 | 
					```bash
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -6,6 +6,7 @@
 | 
				
			||||||
**`IPEX-LLM`** is an LLM acceleration library for Intel [GPU](Quickstart/install_windows_gpu.md) *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)*, [NPU](Quickstart/npu_quickstart.md) and CPU [^1].
 | 
					**`IPEX-LLM`** is an LLM acceleration library for Intel [GPU](Quickstart/install_windows_gpu.md) *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)*, [NPU](Quickstart/npu_quickstart.md) and CPU [^1].
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Latest Update 🔥 
 | 
					## Latest Update 🔥 
 | 
				
			||||||
 | 
					- [2025/04] We released `ipex-llm 2.2.0`, which includes [Ollama Portable Zip and llama.cpp Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0).
 | 
				
			||||||
- [2025/03] We can now run **DeepSeek-R1-671B-Q4_K_M** with 1 or 2 Arc A770 on Xeon using the latest [llama.cpp Portable Zip](Quickstart/llamacpp_portable_zip_gpu_quickstart.md#flashmoe-for-deepseek-v3r1).
 | 
					- [2025/03] We can now run **DeepSeek-R1-671B-Q4_K_M** with 1 or 2 Arc A770 on Xeon using the latest [llama.cpp Portable Zip](Quickstart/llamacpp_portable_zip_gpu_quickstart.md#flashmoe-for-deepseek-v3r1).
 | 
				
			||||||
- [2025/02] We added support of [llama.cpp Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) for Intel **GPU** (both [Windows](Quickstart/llamacpp_portable_zip_gpu_quickstart.md#windows-quickstart) and [Linux](Quickstart/llamacpp_portable_zip_gpu_quickstart.md#linux-quickstart)) and **NPU** ([Windows](Quickstart/llama_cpp_npu_portable_zip_quickstart.md) only).
 | 
					- [2025/02] We added support of [llama.cpp Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) for Intel **GPU** (both [Windows](Quickstart/llamacpp_portable_zip_gpu_quickstart.md#windows-quickstart) and [Linux](Quickstart/llamacpp_portable_zip_gpu_quickstart.md#linux-quickstart)) and **NPU** ([Windows](Quickstart/llama_cpp_npu_portable_zip_quickstart.md) only).
 | 
				
			||||||
- [2025/02] We added support of [Ollama Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) to directly run Ollama on Intel **GPU** for both [Windows](Quickstart/ollama_portable_zip_quickstart.md#windows-quickstart) and [Linux](Quickstart/ollama_portable_zip_quickstart.md#linux-quickstart) (***without the need of manual installations***).
 | 
					- [2025/02] We added support of [Ollama Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) to directly run Ollama on Intel **GPU** for both [Windows](Quickstart/ollama_portable_zip_quickstart.md#windows-quickstart) and [Linux](Quickstart/ollama_portable_zip_quickstart.md#linux-quickstart) (***without the need of manual installations***).
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -6,6 +6,7 @@
 | 
				
			||||||
**`ipex-llm`** 是一个将大语言模型高效地运行于 Intel [GPU](docs/mddocs/Quickstart/install_windows_gpu.md) *(如搭载集成显卡的个人电脑,Arc 独立显卡、Flex 及 Max 数据中心 GPU 等)*、[NPU](docs/mddocs/Quickstart/npu_quickstart.md) 和 CPU 上的大模型 XPU 加速库[^1]。 
 | 
					**`ipex-llm`** 是一个将大语言模型高效地运行于 Intel [GPU](docs/mddocs/Quickstart/install_windows_gpu.md) *(如搭载集成显卡的个人电脑,Arc 独立显卡、Flex 及 Max 数据中心 GPU 等)*、[NPU](docs/mddocs/Quickstart/npu_quickstart.md) 和 CPU 上的大模型 XPU 加速库[^1]。 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## 最新更新 🔥 
 | 
					## 最新更新 🔥 
 | 
				
			||||||
 | 
					- [2025/04] 发布 `ipex-llm 2.2.0`, 其中包括 [Ollama Portable Zip 和 llama.cpp Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0)。
 | 
				
			||||||
- [2025/03] 使用最新 [llama.cpp Portable Zip](Quickstart/llamacpp_portable_zip_gpu_quickstart.zh-CN.md#flashmoe-运行-deepseek-v3r1), 可以在 Xeon 上通过1到2张 Arc A770 GPU 运行 **DeepSeek-R1-671B-Q4_K_M**。
 | 
					- [2025/03] 使用最新 [llama.cpp Portable Zip](Quickstart/llamacpp_portable_zip_gpu_quickstart.zh-CN.md#flashmoe-运行-deepseek-v3r1), 可以在 Xeon 上通过1到2张 Arc A770 GPU 运行 **DeepSeek-R1-671B-Q4_K_M**。
 | 
				
			||||||
- [2025/02] 新增 [llama.cpp Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) 在 Intel **GPU** (包括 [Windows](Quickstart/llamacpp_portable_zip_gpu_quickstart.zh-CN.md#windows-用户指南) 和 [Linux](Quickstart/llamacpp_portable_zip_gpu_quickstart.zh-CN.md#linux-用户指南)) 和 **NPU** (仅 [Windows](Quickstart/llama_cpp_npu_portable_zip_quickstart.zh-CN.md)) 上直接**免安装运行 llama.cpp**。
 | 
					- [2025/02] 新增 [llama.cpp Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) 在 Intel **GPU** (包括 [Windows](Quickstart/llamacpp_portable_zip_gpu_quickstart.zh-CN.md#windows-用户指南) 和 [Linux](Quickstart/llamacpp_portable_zip_gpu_quickstart.zh-CN.md#linux-用户指南)) 和 **NPU** (仅 [Windows](Quickstart/llama_cpp_npu_portable_zip_quickstart.zh-CN.md)) 上直接**免安装运行 llama.cpp**。
 | 
				
			||||||
- [2025/02] 新增 [Ollama Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) 在 Intel **GPU** 上直接**免安装运行 Ollama** (包括 [Windows](Quickstart/ollama_portable_zip_quickstart.zh-CN.md#windows用户指南) 和 [Linux](Quickstart/ollama_portable_zip_quickstart.zh-CN.md#linux用户指南))。
 | 
					- [2025/02] 新增 [Ollama Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) 在 Intel **GPU** 上直接**免安装运行 Ollama** (包括 [Windows](Quickstart/ollama_portable_zip_quickstart.zh-CN.md#windows用户指南) 和 [Linux](Quickstart/ollama_portable_zip_quickstart.zh-CN.md#linux用户指南))。
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -46,7 +46,7 @@ exclude_patterns = ["*__pycache__*", "*ipynb_checkpoints*"]
 | 
				
			||||||
IPEX_LLM_PYTHON_HOME = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
 | 
					IPEX_LLM_PYTHON_HOME = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
 | 
				
			||||||
VERSION = open(os.path.join(IPEX_LLM_PYTHON_HOME,
 | 
					VERSION = open(os.path.join(IPEX_LLM_PYTHON_HOME,
 | 
				
			||||||
               './llm/version.txt'), 'r').read().strip()
 | 
					               './llm/version.txt'), 'r').read().strip()
 | 
				
			||||||
CORE_XE_VERSION = VERSION.replace("2.2.0", "2.6.0")
 | 
					CORE_XE_VERSION = VERSION.replace("2.3.0", "2.7.0")
 | 
				
			||||||
llm_home = os.path.join(os.path.dirname(os.path.abspath(__file__)), "src")
 | 
					llm_home = os.path.join(os.path.dirname(os.path.abspath(__file__)), "src")
 | 
				
			||||||
github_artifact_dir = os.path.join(llm_home, '../llm-binary')
 | 
					github_artifact_dir = os.path.join(llm_home, '../llm-binary')
 | 
				
			||||||
libs_dir = os.path.join(llm_home, "ipex_llm", "libs")
 | 
					libs_dir = os.path.join(llm_home, "ipex_llm", "libs")
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -1 +1 @@
 | 
				
			||||||
2.2.0.dev0
 | 
					2.3.0.dev0
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue