Remove all ipex usage (#12666)
This commit is contained in:
parent
0534d7254f
commit
ccf618ff4a
9 changed files with 39 additions and 553 deletions
|
|
@ -148,7 +148,7 @@ def run_transformer_int4_gpu(repo_id,
|
||||||
num_beams,
|
num_beams,
|
||||||
low_bit):
|
low_bit):
|
||||||
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
||||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
from transformers import AutoTokenizer, LlamaTokenizer
|
||||||
import intel_extension_for_pytorch as ipex
|
import intel_extension_for_pytorch as ipex
|
||||||
reserved_mem_list = []
|
reserved_mem_list = []
|
||||||
model_path = get_model_path(repo_id, local_model_hub)
|
model_path = get_model_path(repo_id, local_model_hub)
|
||||||
|
|
@ -170,9 +170,6 @@ def run_transformer_int4_gpu(repo_id,
|
||||||
trust_remote_code=True, use_cache=True).eval()
|
trust_remote_code=True, use_cache=True).eval()
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
model = model.to('xpu')
|
model = model.to('xpu')
|
||||||
if isinstance(model, GPTJForCausalLM):
|
|
||||||
# For gpt-j model family, this optimization can provide a better performance.
|
|
||||||
model = ipex.optimize(model.eval(), inplace=True)
|
|
||||||
end = time.perf_counter()
|
end = time.perf_counter()
|
||||||
print(">> loading of model costs {}s".format(end - st))
|
print(">> loading of model costs {}s".format(end - st))
|
||||||
reserved_mem_list.append(torch.xpu.memory.memory_reserved()/(1024**3))
|
reserved_mem_list.append(torch.xpu.memory.memory_reserved()/(1024**3))
|
||||||
|
|
@ -227,7 +224,7 @@ if __name__ == '__main__':
|
||||||
today = date.today()
|
today = date.today()
|
||||||
if 'exclude' in conf:
|
if 'exclude' in conf:
|
||||||
excludes = conf['exclude']
|
excludes = conf['exclude']
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
for api in conf.test_api:
|
for api in conf.test_api:
|
||||||
for model in conf.repo_id:
|
for model in conf.repo_id:
|
||||||
|
|
@ -240,7 +237,7 @@ if __name__ == '__main__':
|
||||||
run_model(model, api, in_out_pairs, conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'],
|
run_model(model, api, in_out_pairs, conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'],
|
||||||
conf['low_bit'], conf['cpu_embedding'])
|
conf['low_bit'], conf['cpu_embedding'])
|
||||||
df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
|
df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
|
||||||
'input/output tokens', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding',
|
'input/output tokens', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding',
|
||||||
'peak mem (GB)'])
|
'peak mem (GB)'])
|
||||||
|
|
||||||
df.to_csv(f'{current_dir}/{api}-results-{today}.csv')
|
df.to_csv(f'{current_dir}/{api}-results-{today}.csv')
|
||||||
|
|
|
||||||
|
|
@ -138,8 +138,8 @@ def preprocess_prompt(tokenizer, in_len, task):
|
||||||
elif in_len == 4096:
|
elif in_len == 4096:
|
||||||
input_str = open(f"prompt/QA/orca_497.txt", 'r', encoding='utf-8').read()
|
input_str = open(f"prompt/QA/orca_497.txt", 'r', encoding='utf-8').read()
|
||||||
else:
|
else:
|
||||||
raise ValueError("No corresponding prompt available now, will be added later.")
|
raise ValueError("No corresponding prompt available now, will be added later.")
|
||||||
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||||
return input_ids
|
return input_ids
|
||||||
|
|
||||||
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False, batch_size=1, streaming=False, use_fp16_torch_dtype=False, lookahead=False, task='continuation', optimize_model=False, transpose_value_cache=True, group_size=64):
|
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False, batch_size=1, streaming=False, use_fp16_torch_dtype=False, lookahead=False, task='continuation', optimize_model=False, transpose_value_cache=True, group_size=64):
|
||||||
|
|
@ -222,7 +222,7 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
|
||||||
streaming if 'win' in test_api else 'N/A',
|
streaming if 'win' in test_api else 'N/A',
|
||||||
use_fp16_torch_dtype if 'pipeline_parallel_gpu' in test_api else 'N/A',
|
use_fp16_torch_dtype if 'pipeline_parallel_gpu' in test_api else 'N/A',
|
||||||
group_size if any(keyword in test_api for keyword in ['transformers_int4_npu_win', 'transformers_int4_npu_pipeline_win']) else 'N/A'],
|
group_size if any(keyword in test_api for keyword in ['transformers_int4_npu_win', 'transformers_int4_npu_pipeline_win']) else 'N/A'],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def get_model_path(repo_id, local_model_hub):
|
def get_model_path(repo_id, local_model_hub):
|
||||||
|
|
@ -475,7 +475,7 @@ def run_transformer_int4_gpu(repo_id,
|
||||||
lookahead=False,
|
lookahead=False,
|
||||||
task='continuation'):
|
task='continuation'):
|
||||||
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
||||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
from transformers import AutoTokenizer, LlamaTokenizer
|
||||||
model_path = get_model_path(repo_id, local_model_hub)
|
model_path = get_model_path(repo_id, local_model_hub)
|
||||||
# Load model in 4 bit,
|
# Load model in 4 bit,
|
||||||
# which convert the relevant layers in the model into INT4 format
|
# which convert the relevant layers in the model into INT4 format
|
||||||
|
|
@ -490,7 +490,7 @@ def run_transformer_int4_gpu(repo_id,
|
||||||
model = AutoModel.load_low_bit(model_path, optimize_model=True,
|
model = AutoModel.load_low_bit(model_path, optimize_model=True,
|
||||||
trust_remote_code=True, use_cache=True,
|
trust_remote_code=True, use_cache=True,
|
||||||
cpu_embedding=cpu_embedding,
|
cpu_embedding=cpu_embedding,
|
||||||
torch_dtype=torch_dtype).eval()
|
torch_dtype=torch_dtype).eval()
|
||||||
else:
|
else:
|
||||||
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
||||||
trust_remote_code=True, use_cache=True,
|
trust_remote_code=True, use_cache=True,
|
||||||
|
|
@ -507,7 +507,7 @@ def run_transformer_int4_gpu(repo_id,
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
|
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
|
||||||
_attn_implementation="eager",
|
_attn_implementation="eager",
|
||||||
modules_to_not_convert=["vision_embed_tokens"],
|
modules_to_not_convert=["vision_embed_tokens"],
|
||||||
trust_remote_code=True, use_cache=True,
|
trust_remote_code=True, use_cache=True,
|
||||||
cpu_embedding=cpu_embedding, torch_dtype=torch_dtype).eval()
|
cpu_embedding=cpu_embedding, torch_dtype=torch_dtype).eval()
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
model = model.to('xpu')
|
model = model.to('xpu')
|
||||||
|
|
@ -632,14 +632,14 @@ def transformers_int4_npu_win(repo_id,
|
||||||
st = time.perf_counter()
|
st = time.perf_counter()
|
||||||
if repo_id in MINICPM_V_IDS:
|
if repo_id in MINICPM_V_IDS:
|
||||||
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=optimize_model,
|
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=optimize_model,
|
||||||
trust_remote_code=True, use_cache=True, max_context_len=max_context_len, max_prompt_len=int(in_out_len[0]),
|
trust_remote_code=True, use_cache=True, max_context_len=max_context_len, max_prompt_len=int(in_out_len[0]),
|
||||||
quantization_group_size=npu_group_size, transpose_value_cache=transpose_value_cache,
|
quantization_group_size=npu_group_size, transpose_value_cache=transpose_value_cache,
|
||||||
save_directory=save_directory, attn_implementation="eager", torch_dtype=torch.float16).eval()
|
save_directory=save_directory, attn_implementation="eager", torch_dtype=torch.float16).eval()
|
||||||
model = model.llm
|
model = model.llm
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
else:
|
else:
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype=torch.float16,
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype=torch.float16,
|
||||||
optimize_model=optimize_model, max_context_len=max_context_len, max_prompt_len=int(in_out_len[0]),
|
optimize_model=optimize_model, max_context_len=max_context_len, max_prompt_len=int(in_out_len[0]),
|
||||||
quantization_group_size=npu_group_size, transpose_value_cache=transpose_value_cache,
|
quantization_group_size=npu_group_size, transpose_value_cache=transpose_value_cache,
|
||||||
save_directory=save_directory, use_cache=True, attn_implementation="eager").eval()
|
save_directory=save_directory, use_cache=True, attn_implementation="eager").eval()
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
|
@ -707,7 +707,7 @@ def transformers_int4_npu_pipeline_win(repo_id,
|
||||||
st = time.perf_counter()
|
st = time.perf_counter()
|
||||||
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, pipeline=True, torch_dtype=torch.float16,
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, pipeline=True, torch_dtype=torch.float16,
|
||||||
optimize_model=optimize_model, max_context_len=max_context_len, max_prompt_len=int(in_out_len[0]),
|
optimize_model=optimize_model, max_context_len=max_context_len, max_prompt_len=int(in_out_len[0]),
|
||||||
quantization_group_size=npu_group_size, transpose_value_cache=transpose_value_cache,
|
quantization_group_size=npu_group_size, transpose_value_cache=transpose_value_cache,
|
||||||
use_cache=True, attn_implementation="eager",
|
use_cache=True, attn_implementation="eager",
|
||||||
save_directory=save_directory).eval()
|
save_directory=save_directory).eval()
|
||||||
|
|
@ -843,7 +843,7 @@ def run_transformers_openvino(repo_id,
|
||||||
|
|
||||||
ov_config = {"PERFORMANCE_HINT": "LATENCY",
|
ov_config = {"PERFORMANCE_HINT": "LATENCY",
|
||||||
"NUM_STREAMS": "1", "CACHE_DIR": ""}
|
"NUM_STREAMS": "1", "CACHE_DIR": ""}
|
||||||
config_dict = dict(pretrained_model_name_or_path=model_path,
|
config_dict = dict(pretrained_model_name_or_path=model_path,
|
||||||
trust_remote_code=True,
|
trust_remote_code=True,
|
||||||
use_cache=True, low_cpu_mem_usage=True)
|
use_cache=True, low_cpu_mem_usage=True)
|
||||||
|
|
||||||
|
|
@ -906,7 +906,7 @@ def run_optimize_model_gpu(repo_id,
|
||||||
num_beams,
|
num_beams,
|
||||||
low_bit,
|
low_bit,
|
||||||
batch_size):
|
batch_size):
|
||||||
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer
|
||||||
from ipex_llm import optimize_model
|
from ipex_llm import optimize_model
|
||||||
model_path = get_model_path(repo_id, local_model_hub)
|
model_path = get_model_path(repo_id, local_model_hub)
|
||||||
# Load model in 4 bit,
|
# Load model in 4 bit,
|
||||||
|
|
@ -986,7 +986,7 @@ def run_ipex_fp16_gpu(repo_id,
|
||||||
num_beams,
|
num_beams,
|
||||||
batch_size):
|
batch_size):
|
||||||
from transformers import AutoModel, AutoModelForCausalLM
|
from transformers import AutoModel, AutoModelForCausalLM
|
||||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
from transformers import AutoTokenizer, LlamaTokenizer
|
||||||
model_path = get_model_path(repo_id, local_model_hub)
|
model_path = get_model_path(repo_id, local_model_hub)
|
||||||
st = time.perf_counter()
|
st = time.perf_counter()
|
||||||
if repo_id in CHATGLM_IDS:
|
if repo_id in CHATGLM_IDS:
|
||||||
|
|
@ -1051,7 +1051,7 @@ def run_bigdl_fp16_gpu(repo_id,
|
||||||
num_beams,
|
num_beams,
|
||||||
batch_size):
|
batch_size):
|
||||||
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
||||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
from transformers import AutoTokenizer, LlamaTokenizer
|
||||||
model_path = get_model_path(repo_id, local_model_hub)
|
model_path = get_model_path(repo_id, local_model_hub)
|
||||||
st = time.perf_counter()
|
st = time.perf_counter()
|
||||||
if repo_id in CHATGLM_IDS:
|
if repo_id in CHATGLM_IDS:
|
||||||
|
|
@ -1209,7 +1209,7 @@ def run_transformer_int4_gpu_win(repo_id,
|
||||||
batch_size,
|
batch_size,
|
||||||
streaming):
|
streaming):
|
||||||
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
||||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer, TextStreamer
|
from transformers import AutoTokenizer, LlamaTokenizer, TextStreamer
|
||||||
model_path = get_model_path(repo_id, local_model_hub)
|
model_path = get_model_path(repo_id, local_model_hub)
|
||||||
# Load model in 4 bit,
|
# Load model in 4 bit,
|
||||||
# which convert the relevant layers in the model into INT4 format
|
# which convert the relevant layers in the model into INT4 format
|
||||||
|
|
@ -1338,7 +1338,7 @@ def run_transformer_int4_fp16_gpu_win(repo_id,
|
||||||
batch_size,
|
batch_size,
|
||||||
streaming):
|
streaming):
|
||||||
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
||||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer, TextStreamer
|
from transformers import AutoTokenizer, LlamaTokenizer, TextStreamer
|
||||||
model_path = get_model_path(repo_id, local_model_hub)
|
model_path = get_model_path(repo_id, local_model_hub)
|
||||||
# Load model in 4 bit,
|
# Load model in 4 bit,
|
||||||
# which convert the relevant layers in the model into INT4 format
|
# which convert the relevant layers in the model into INT4 format
|
||||||
|
|
@ -1475,7 +1475,7 @@ def run_transformer_int4_loadlowbit_gpu_win(repo_id,
|
||||||
batch_size,
|
batch_size,
|
||||||
streaming):
|
streaming):
|
||||||
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
||||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer, TextStreamer
|
from transformers import AutoTokenizer, LlamaTokenizer, TextStreamer
|
||||||
model_path = get_model_path(repo_id, local_model_hub)
|
model_path = get_model_path(repo_id, local_model_hub)
|
||||||
# Load BigDL-LLM optimized low bit model
|
# Load BigDL-LLM optimized low bit model
|
||||||
st = time.perf_counter()
|
st = time.perf_counter()
|
||||||
|
|
@ -1585,7 +1585,7 @@ def run_transformer_int4_fp16_loadlowbit_gpu_win(repo_id,
|
||||||
batch_size,
|
batch_size,
|
||||||
streaming):
|
streaming):
|
||||||
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
||||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer, TextStreamer
|
from transformers import AutoTokenizer, LlamaTokenizer, TextStreamer
|
||||||
model_path = get_model_path(repo_id, local_model_hub)
|
model_path = get_model_path(repo_id, local_model_hub)
|
||||||
# Load BigDL-LLM optimized low bit model
|
# Load BigDL-LLM optimized low bit model
|
||||||
st = time.perf_counter()
|
st = time.perf_counter()
|
||||||
|
|
@ -1972,7 +1972,7 @@ def run_deepspeed_optimize_model_gpu(repo_id,
|
||||||
os.environ["WORLD_SIZE"] = str(world_size)
|
os.environ["WORLD_SIZE"] = str(world_size)
|
||||||
os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "29500")
|
os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "29500")
|
||||||
|
|
||||||
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer
|
||||||
from ipex_llm import optimize_model
|
from ipex_llm import optimize_model
|
||||||
import deepspeed
|
import deepspeed
|
||||||
from deepspeed.accelerator.cpu_accelerator import CPU_Accelerator
|
from deepspeed.accelerator.cpu_accelerator import CPU_Accelerator
|
||||||
|
|
@ -2013,7 +2013,7 @@ def run_deepspeed_optimize_model_gpu(repo_id,
|
||||||
# Move model back to xpu
|
# Move model back to xpu
|
||||||
model = model.to(f'xpu:{local_rank}')
|
model = model.to(f'xpu:{local_rank}')
|
||||||
|
|
||||||
# Modify backend related settings
|
# Modify backend related settings
|
||||||
if world_size > 1:
|
if world_size > 1:
|
||||||
get_accelerator().set_device(local_rank)
|
get_accelerator().set_device(local_rank)
|
||||||
dist_backend = get_accelerator().communication_backend_name()
|
dist_backend = get_accelerator().communication_backend_name()
|
||||||
|
|
@ -2215,7 +2215,7 @@ def run_pipeline_parallel_gpu(repo_id,
|
||||||
cpu_embedding,
|
cpu_embedding,
|
||||||
fp16=False):
|
fp16=False):
|
||||||
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM, init_pipeline_parallel
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM, init_pipeline_parallel
|
||||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
from transformers import AutoTokenizer, LlamaTokenizer
|
||||||
init_pipeline_parallel()
|
init_pipeline_parallel()
|
||||||
model_path = get_model_path(repo_id, local_model_hub)
|
model_path = get_model_path(repo_id, local_model_hub)
|
||||||
pipeline_parallel_stages = torch.distributed.get_world_size()
|
pipeline_parallel_stages = torch.distributed.get_world_size()
|
||||||
|
|
@ -2311,7 +2311,7 @@ if __name__ == '__main__':
|
||||||
transpose_value_cache = True
|
transpose_value_cache = True
|
||||||
if 'transpose_value_cache' in conf:
|
if 'transpose_value_cache' in conf:
|
||||||
transpose_value_cache = conf['transpose_value_cache']
|
transpose_value_cache = conf['transpose_value_cache']
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
for api in conf.test_api:
|
for api in conf.test_api:
|
||||||
global csv_name
|
global csv_name
|
||||||
|
|
|
||||||
|
|
@ -680,18 +680,9 @@ def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
|
||||||
optimize_lm_head=optimize_lm_head
|
optimize_lm_head=optimize_lm_head
|
||||||
)
|
)
|
||||||
device = module.weight.data.device
|
device = module.weight.data.device
|
||||||
from ipex_llm.transformers.utils import get_ipex_version
|
new_linear._parameters['weight'] = nn.Parameter(module.weight)
|
||||||
if get_ipex_version() < "2.1.10+xpu":
|
|
||||||
new_linear._parameters['weight'] = nn.Parameter(module.weight)
|
|
||||||
else:
|
|
||||||
# only from 2.1, ipex provides matmul_bias_out
|
|
||||||
# so we need to transpose weight
|
|
||||||
new_weight = module.weight.transpose(0, 1).contiguous()
|
|
||||||
new_linear._parameters['weight'] = nn.Parameter(new_weight)
|
|
||||||
new_linear.weight_type = 2
|
|
||||||
if module.bias is not None:
|
if module.bias is not None:
|
||||||
new_linear._parameters['bias'] = nn.Parameter(module.bias.data)\
|
new_linear._parameters['bias'] = nn.Parameter(module.bias.data).to(device)
|
||||||
.to(device)
|
|
||||||
elif qtype == ggml_tensor_qtype["bf16"]:
|
elif qtype == ggml_tensor_qtype["bf16"]:
|
||||||
module.to(torch.bfloat16)
|
module.to(torch.bfloat16)
|
||||||
if _USE_VLLM:
|
if _USE_VLLM:
|
||||||
|
|
@ -1452,21 +1443,6 @@ def _optimize_post(model):
|
||||||
module.MultiheadAttention,
|
module.MultiheadAttention,
|
||||||
mpt_multihead_attention_forward
|
mpt_multihead_attention_forward
|
||||||
)
|
)
|
||||||
elif "gptj" in model.config.model_type:
|
|
||||||
# dolly-v1-6b
|
|
||||||
modeling_module_name = model.__class__.__module__
|
|
||||||
module = importlib.import_module(modeling_module_name)
|
|
||||||
from ipex_llm.transformers.models.gptj import gptj_attention_forward, gptj_model_forward,\
|
|
||||||
gptj_block_forward
|
|
||||||
convert_forward(model,
|
|
||||||
module.GPTJAttention,
|
|
||||||
gptj_attention_forward)
|
|
||||||
convert_forward(model,
|
|
||||||
module.GPTJModel,
|
|
||||||
gptj_model_forward)
|
|
||||||
convert_forward(model,
|
|
||||||
module.GPTJBlock,
|
|
||||||
gptj_block_forward)
|
|
||||||
elif "bloom" in model.config.model_type:
|
elif "bloom" in model.config.model_type:
|
||||||
modeling_module_name = model.__class__.__module__
|
modeling_module_name = model.__class__.__module__
|
||||||
module = importlib.import_module(modeling_module_name)
|
module = importlib.import_module(modeling_module_name)
|
||||||
|
|
|
||||||
|
|
@ -22,7 +22,7 @@ import time
|
||||||
from datetime import date
|
from datetime import date
|
||||||
import argparse
|
import argparse
|
||||||
from ipex_llm.utils.common import invalidInputError
|
from ipex_llm.utils.common import invalidInputError
|
||||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
from transformers import AutoTokenizer, LlamaTokenizer
|
||||||
|
|
||||||
LLAMA_IDS = ['llama', 'vicuna', 'merged-baize']
|
LLAMA_IDS = ['llama', 'vicuna', 'merged-baize']
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -759,9 +759,9 @@ class FP16Linear(nn.Linear):
|
||||||
self.weight_length = self.out_len * self.in_len
|
self.weight_length = self.out_len * self.in_len
|
||||||
self.qtype = ggml_tensor_qtype["fp16"]
|
self.qtype = ggml_tensor_qtype["fp16"]
|
||||||
self.mp_group = mp_group
|
self.mp_group = mp_group
|
||||||
# weigh_type = 1 means original weight
|
# weight_type = 1 means original weight
|
||||||
# weigh_type = 2 means weight has been transposed
|
# weight_type = 2 means weight has been transposed
|
||||||
# weigh_type = 3 means weight has been transposed by esimd method
|
# weight_type = 3 means weight has been transposed by esimd method
|
||||||
self.weight_type = 1
|
self.weight_type = 1
|
||||||
self.optimize_lm_head = optimize_lm_head
|
self.optimize_lm_head = optimize_lm_head
|
||||||
self.disable_fp16_opt = False
|
self.disable_fp16_opt = False
|
||||||
|
|
@ -775,28 +775,14 @@ class FP16Linear(nn.Linear):
|
||||||
|
|
||||||
x = x.to(torch.float16)
|
x = x.to(torch.float16)
|
||||||
if self.bias is not None and self.bias.dtype != x.dtype:
|
if self.bias is not None and self.bias.dtype != x.dtype:
|
||||||
self.bias.data = self.bias.data.to(x.dtype)
|
self.bias.data = self.bias.data.to(x.dtype)
|
||||||
if self.weight is not None and self.weight.dtype != x.dtype:
|
if self.weight is not None and self.weight.dtype != x.dtype:
|
||||||
self.weight.data = self.weight.data.to(x.dtype)
|
self.weight.data = self.weight.data.to(x.dtype)
|
||||||
|
|
||||||
if not self.use_esimd_kernel(x):
|
if not self.use_esimd_kernel(x):
|
||||||
if (
|
invalidInputError(self.weight_type == 1, "weight_type should be 1")
|
||||||
get_ipex_version() < "2.1.10+xpu"
|
result = F.linear(x, self.weight, self.bias)
|
||||||
or get_xpu_device_name(x.device) not in ["arc", "pvc"]
|
|
||||||
or self.disable_fp16_opt
|
|
||||||
):
|
|
||||||
if self.weight_type == 2:
|
|
||||||
self.weight = torch.nn.Parameter(self.weight.transpose(0, 1).contiguous(),
|
|
||||||
requires_grad=False)
|
|
||||||
self.weight_type = 1
|
|
||||||
result = F.linear(x, self.weight, self.bias)
|
|
||||||
else:
|
|
||||||
if self.weight_type == 1:
|
|
||||||
self.weight = torch.nn.Parameter(self.weight.transpose(0, 1).contiguous(),
|
|
||||||
requires_grad=False)
|
|
||||||
self.weight_type = 2
|
|
||||||
result = torch.ops.torch_ipex.matmul_bias_out(x.contiguous(),
|
|
||||||
self.weight, self.bias)
|
|
||||||
if self.mp_group is not None:
|
if self.mp_group is not None:
|
||||||
if get_use_vllm():
|
if get_use_vllm():
|
||||||
result = self.mp_group.all_reduce(result)
|
result = self.mp_group.all_reduce(result)
|
||||||
|
|
@ -852,7 +838,7 @@ class FP16Linear(nn.Linear):
|
||||||
if self.disable_fp16_opt:
|
if self.disable_fp16_opt:
|
||||||
return False
|
return False
|
||||||
# esimd kernel can only be used for Arc and Flex
|
# esimd kernel can only be used for Arc and Flex
|
||||||
if gpu_type not in ["arc", "flex"]:
|
if gpu_type not in ["arc"]:
|
||||||
return False
|
return False
|
||||||
# now esimd kernel can only be used for specific cases (llama2-7b shape)
|
# now esimd kernel can only be used for specific cases (llama2-7b shape)
|
||||||
if self.in_len == 11008 and self.out_features == 4096:
|
if self.in_len == 11008 and self.out_features == 4096:
|
||||||
|
|
|
||||||
|
|
@ -103,12 +103,6 @@ def save_low_bit(self, *args, **kwargs):
|
||||||
self.to(origin_device)
|
self.to(origin_device)
|
||||||
|
|
||||||
|
|
||||||
def _load_pre():
|
|
||||||
from transformers import GPTJModel
|
|
||||||
from ipex_llm.transformers.models.gptj import gptj_model_new_init
|
|
||||||
GPTJModel.__init__ = gptj_model_new_init
|
|
||||||
|
|
||||||
|
|
||||||
class _BaseAutoModelClass:
|
class _BaseAutoModelClass:
|
||||||
HF_MODEL = None
|
HF_MODEL = None
|
||||||
|
|
||||||
|
|
@ -495,7 +489,6 @@ class _BaseAutoModelClass:
|
||||||
else:
|
else:
|
||||||
if quant_config is not None:
|
if quant_config is not None:
|
||||||
kwargs["quantization_config"] = quant_config
|
kwargs["quantization_config"] = quant_config
|
||||||
_load_pre()
|
|
||||||
try:
|
try:
|
||||||
# To handle the input CUDA setting (such as 'device_map={"":0}'), ignore it
|
# To handle the input CUDA setting (such as 'device_map={"":0}'), ignore it
|
||||||
kwargs.pop('device_map', None)
|
kwargs.pop('device_map', None)
|
||||||
|
|
|
||||||
|
|
@ -1,441 +0,0 @@
|
||||||
#
|
|
||||||
# Copyright 2016 The BigDL Authors.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
#
|
|
||||||
# This file is adapted from
|
|
||||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/gptj/modeling_gptj.py
|
|
||||||
#
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from typing import Optional, Tuple, Union
|
|
||||||
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \
|
|
||||||
apply_rotary_pos_emb, append_kv_cache, apply_ipex_rotate_every_two
|
|
||||||
from transformers.utils.import_utils import is_torch_fx_proxy
|
|
||||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
|
||||||
from transformers.models.gptj.modeling_gptj import GPTJModel
|
|
||||||
from ipex_llm.utils.common import invalidInputError
|
|
||||||
|
|
||||||
import os
|
|
||||||
|
|
||||||
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
|
|
||||||
|
|
||||||
|
|
||||||
def _get_embed_positions(self, position_ids):
|
|
||||||
embed_positions = self.embed_positions
|
|
||||||
if embed_positions.device != position_ids.device:
|
|
||||||
embed_positions = embed_positions.to(position_ids.device)
|
|
||||||
self.embed_positions = embed_positions
|
|
||||||
return embed_positions.repeat(position_ids.shape[0], 1, 1)
|
|
||||||
|
|
||||||
|
|
||||||
def _attn(
|
|
||||||
self,
|
|
||||||
query,
|
|
||||||
key,
|
|
||||||
value,
|
|
||||||
attention_mask=None,
|
|
||||||
head_mask=None,
|
|
||||||
):
|
|
||||||
# compute causal mask from causal mask buffer
|
|
||||||
query_length, key_length = query.size(-2), key.size(-2)
|
|
||||||
causal_mask = self.bias[:, :, key_length - query_length: key_length, :key_length]
|
|
||||||
|
|
||||||
# Keep the attention weights computation in fp32 to avoid overflow issues
|
|
||||||
query = query.to(torch.float32)
|
|
||||||
key = key.to(torch.float32)
|
|
||||||
|
|
||||||
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
|
||||||
|
|
||||||
mask_value = torch.finfo(attn_weights.dtype).min
|
|
||||||
# Need to be a tensor, otherwise we get error:
|
|
||||||
# `RuntimeError: expected scalar type float but found double`.
|
|
||||||
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
|
||||||
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
|
||||||
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
|
||||||
|
|
||||||
attn_weights = attn_weights / self.scale_attn
|
|
||||||
|
|
||||||
if attention_mask is not None:
|
|
||||||
# Apply the attention mask
|
|
||||||
attn_weights = attn_weights + attention_mask
|
|
||||||
|
|
||||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
|
||||||
attn_weights = attn_weights.to(value.dtype)
|
|
||||||
attn_weights = self.attn_dropout(attn_weights)
|
|
||||||
|
|
||||||
# Mask heads if we want to
|
|
||||||
if head_mask is not None:
|
|
||||||
attn_weights = attn_weights * head_mask
|
|
||||||
|
|
||||||
attn_output = torch.matmul(attn_weights, value)
|
|
||||||
|
|
||||||
return attn_output, attn_weights
|
|
||||||
|
|
||||||
|
|
||||||
def gptj_attention_forward(
|
|
||||||
self,
|
|
||||||
hidden_states: torch.FloatTensor,
|
|
||||||
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
|
||||||
attention_mask: Optional[torch.FloatTensor] = None,
|
|
||||||
position_ids: Optional[torch.LongTensor] = None,
|
|
||||||
head_mask: Optional[torch.FloatTensor] = None,
|
|
||||||
use_cache: Optional[bool] = False,
|
|
||||||
rotary_emb: Optional[Tuple]=None,
|
|
||||||
output_attentions: Optional[bool] = False,
|
|
||||||
) -> Union[
|
|
||||||
Tuple[torch.Tensor, Tuple[torch.Tensor]],
|
|
||||||
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
|
|
||||||
]:
|
|
||||||
query = self.q_proj(hidden_states)
|
|
||||||
key = self.k_proj(hidden_states)
|
|
||||||
value = self.v_proj(hidden_states)
|
|
||||||
|
|
||||||
query = self._split_heads(query, self.num_attention_heads, self.head_dim, True)
|
|
||||||
key = self._split_heads(key, self.num_attention_heads, self.head_dim, True)
|
|
||||||
value = self._split_heads(value, self.num_attention_heads, self.head_dim, False)
|
|
||||||
|
|
||||||
sin, cos = rotary_emb
|
|
||||||
use_fuse_rope = hidden_states.device.type == "xpu" and not self.training
|
|
||||||
|
|
||||||
if self.rotary_dim is not None:
|
|
||||||
k_rot = key[:, :, :, : self.rotary_dim]
|
|
||||||
q_rot = query[:, :, :, : self.rotary_dim]
|
|
||||||
|
|
||||||
if use_fuse_rope:
|
|
||||||
apply_ipex_rotate_every_two(q_rot, k_rot, cos, sin)
|
|
||||||
else:
|
|
||||||
k_pass = key[:, :, :, self.rotary_dim:]
|
|
||||||
q_pass = query[:, :, :, self.rotary_dim:]
|
|
||||||
q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin, position_ids, "gptj")
|
|
||||||
key = torch.cat([k_rot, k_pass], dim=-1)
|
|
||||||
query = torch.cat([q_rot, q_pass], dim=-1)
|
|
||||||
else:
|
|
||||||
if use_fuse_rope:
|
|
||||||
apply_ipex_rotate_every_two(query, key, cos, sin)
|
|
||||||
else:
|
|
||||||
query, key = apply_rotary_pos_emb(query, key, cos, sin, position_ids, "gptj")
|
|
||||||
|
|
||||||
batch_size, q_len, _ = hidden_states.size()
|
|
||||||
|
|
||||||
key = key.permute(0, 2, 1, 3).contiguous()
|
|
||||||
query = query.permute(0, 2, 1, 3).contiguous()
|
|
||||||
|
|
||||||
kv_seq_len = key.size(-2)
|
|
||||||
device = hidden_states.device
|
|
||||||
|
|
||||||
if layer_past is not None:
|
|
||||||
kv_seq_len += layer_past[0].size(2)
|
|
||||||
|
|
||||||
if layer_past is not None:
|
|
||||||
cache_k = layer_past[0]
|
|
||||||
cache_v = layer_past[1]
|
|
||||||
past_length = cache_k.size(2)
|
|
||||||
if cache_k.stride()[1] < kv_seq_len * cache_k.size(3):
|
|
||||||
new_cache_k, new_cache_v = extend_kv_cache(batch_size,
|
|
||||||
self.num_attention_heads,
|
|
||||||
self.head_dim,
|
|
||||||
past_length,
|
|
||||||
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
|
||||||
dtype=cache_v.dtype,
|
|
||||||
device=device)
|
|
||||||
new_cache_k[:] = cache_k
|
|
||||||
new_cache_v[:] = cache_v
|
|
||||||
cache_k = new_cache_k
|
|
||||||
cache_v = new_cache_v
|
|
||||||
key, value = append_kv_cache(cache_k, cache_v, key, value)
|
|
||||||
|
|
||||||
elif use_cache:
|
|
||||||
key_cache, value_cache = init_kv_cache(batch_size,
|
|
||||||
self.num_attention_heads,
|
|
||||||
self.head_dim,
|
|
||||||
kv_seq_len,
|
|
||||||
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
|
||||||
dtype=value.dtype,
|
|
||||||
device=device)
|
|
||||||
key_cache[:] = key
|
|
||||||
value_cache[:] = value
|
|
||||||
key = key_cache
|
|
||||||
value = value_cache
|
|
||||||
|
|
||||||
if use_cache is True:
|
|
||||||
present = (key, value)
|
|
||||||
else:
|
|
||||||
present = None
|
|
||||||
|
|
||||||
# compute self-attention: V x Softmax(QK^T)
|
|
||||||
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
|
||||||
|
|
||||||
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
|
|
||||||
attn_output = self.out_proj(attn_output)
|
|
||||||
attn_output = self.resid_dropout(attn_output)
|
|
||||||
|
|
||||||
outputs = (attn_output, present)
|
|
||||||
if output_attentions:
|
|
||||||
outputs += (attn_weights,)
|
|
||||||
|
|
||||||
return outputs # a, present, (attentions)
|
|
||||||
|
|
||||||
|
|
||||||
def gptj_block_forward(
|
|
||||||
self,
|
|
||||||
hidden_states: Optional[torch.FloatTensor],
|
|
||||||
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
|
||||||
attention_mask: Optional[torch.FloatTensor] = None,
|
|
||||||
position_ids: Optional[torch.LongTensor] = None,
|
|
||||||
head_mask: Optional[torch.FloatTensor] = None,
|
|
||||||
use_cache: Optional[bool] = False,
|
|
||||||
rotary_emb: Optional[Tuple]=None,
|
|
||||||
output_attentions: Optional[bool] = False,
|
|
||||||
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
|
||||||
residual = hidden_states
|
|
||||||
hidden_states = self.ln_1(hidden_states)
|
|
||||||
attn_outputs = self.attn(
|
|
||||||
hidden_states=hidden_states,
|
|
||||||
layer_past=layer_past,
|
|
||||||
attention_mask=attention_mask,
|
|
||||||
position_ids=position_ids,
|
|
||||||
head_mask=head_mask,
|
|
||||||
use_cache=use_cache,
|
|
||||||
rotary_emb=rotary_emb,
|
|
||||||
output_attentions=output_attentions,
|
|
||||||
)
|
|
||||||
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
|
||||||
outputs = attn_outputs[1:]
|
|
||||||
|
|
||||||
feed_forward_hidden_states = self.mlp(hidden_states)
|
|
||||||
hidden_states = attn_output + feed_forward_hidden_states + residual
|
|
||||||
|
|
||||||
if use_cache:
|
|
||||||
outputs = (hidden_states,) + outputs
|
|
||||||
else:
|
|
||||||
outputs = (hidden_states,) + outputs[1:]
|
|
||||||
|
|
||||||
return outputs # hidden_states, present, (attentions)
|
|
||||||
|
|
||||||
|
|
||||||
def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
|
|
||||||
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
|
|
||||||
sinusoid_inp = torch.einsum("i , j -> i j",
|
|
||||||
torch.arange(num_pos, dtype=torch.float), inv_freq).float()
|
|
||||||
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)
|
|
||||||
|
|
||||||
|
|
||||||
old_init = GPTJModel.__init__
|
|
||||||
|
|
||||||
|
|
||||||
def gptj_model_new_init(self, config):
|
|
||||||
old_init(self, config)
|
|
||||||
embed_dim = config.hidden_size
|
|
||||||
rotary_dim = config.rotary_dim
|
|
||||||
pos_embd_dim = rotary_dim or embed_dim
|
|
||||||
max_positions = config.max_position_embeddings
|
|
||||||
self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim)
|
|
||||||
|
|
||||||
|
|
||||||
def get_new_embed_positions(position_ids, prev_embed_positions):
|
|
||||||
embed_positions = prev_embed_positions
|
|
||||||
if embed_positions.device != position_ids.device:
|
|
||||||
embed_positions = embed_positions.to(position_ids.device)
|
|
||||||
prev_embed_positions = embed_positions
|
|
||||||
return embed_positions.repeat(position_ids.shape[0], 1, 1), prev_embed_positions
|
|
||||||
|
|
||||||
|
|
||||||
def gptj_model_forward(
|
|
||||||
self,
|
|
||||||
input_ids: Optional[torch.LongTensor] = None,
|
|
||||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
|
||||||
attention_mask: Optional[torch.FloatTensor] = None,
|
|
||||||
token_type_ids: Optional[torch.LongTensor] = None,
|
|
||||||
position_ids: Optional[torch.LongTensor] = None,
|
|
||||||
head_mask: Optional[torch.FloatTensor] = None,
|
|
||||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
||||||
use_cache: Optional[bool] = None,
|
|
||||||
output_attentions: Optional[bool] = None,
|
|
||||||
output_hidden_states: Optional[bool] = None,
|
|
||||||
return_dict: Optional[bool] = None,
|
|
||||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
||||||
output_attentions = output_attentions if output_attentions is not None \
|
|
||||||
else self.config.output_attentions
|
|
||||||
output_hidden_states = (
|
|
||||||
output_hidden_states if output_hidden_states is not None
|
|
||||||
else self.config.output_hidden_states
|
|
||||||
)
|
|
||||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
||||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
||||||
|
|
||||||
if input_ids is not None and inputs_embeds is not None:
|
|
||||||
invalidInputError(False,
|
|
||||||
"You cannot specify both input_ids and inputs_embeds at the same time")
|
|
||||||
elif input_ids is not None:
|
|
||||||
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
|
||||||
input_shape = input_ids.size()
|
|
||||||
input_ids = input_ids.view(-1, input_shape[-1])
|
|
||||||
batch_size = input_ids.shape[0]
|
|
||||||
elif inputs_embeds is not None:
|
|
||||||
input_shape = inputs_embeds.size()[:-1]
|
|
||||||
batch_size = inputs_embeds.shape[0]
|
|
||||||
else:
|
|
||||||
invalidInputError(False, "You have to specify either input_ids or inputs_embeds")
|
|
||||||
|
|
||||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
||||||
|
|
||||||
if token_type_ids is not None:
|
|
||||||
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
|
||||||
|
|
||||||
if past_key_values is None:
|
|
||||||
past_length = 0
|
|
||||||
past_key_values = tuple([None] * len(self.h))
|
|
||||||
else:
|
|
||||||
past_length = past_key_values[0][0].size(-2)
|
|
||||||
|
|
||||||
if position_ids is None:
|
|
||||||
position_ids = torch.arange(past_length, input_shape[-1] + past_length,
|
|
||||||
dtype=torch.long, device=device)
|
|
||||||
position_ids = position_ids.unsqueeze(0)
|
|
||||||
|
|
||||||
# Attention mask.
|
|
||||||
if attention_mask is not None:
|
|
||||||
if batch_size <= 0:
|
|
||||||
invalidInputError(False, "batch_size has to be defined and > 0")
|
|
||||||
attention_mask = attention_mask.view(batch_size, -1)
|
|
||||||
# We create a 3D attention mask from a 2D tensor mask.
|
|
||||||
# Sizes are [batch_size, 1, 1, to_seq_length]
|
|
||||||
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
|
||||||
# this attention mask is more simple than the triangular masking of causal attention
|
|
||||||
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
|
||||||
attention_mask = attention_mask[:, None, None, :]
|
|
||||||
|
|
||||||
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
|
||||||
# masked positions, this operation will create a tensor which is 0.0 for
|
|
||||||
# positions we want to attend and the dtype's smallest value for masked positions.
|
|
||||||
# Since we are adding it to the raw scores before the softmax, this is
|
|
||||||
# effectively the same as removing these entirely.
|
|
||||||
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
|
||||||
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
|
||||||
|
|
||||||
# Prepare head mask if needed
|
|
||||||
# 1.0 in head_mask indicate we keep the head
|
|
||||||
# attention_probs has shape bsz x num_attention_heads x N x N
|
|
||||||
# head_mask has shape n_layer x batch x num_attention_heads x N x N
|
|
||||||
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
|
||||||
|
|
||||||
if inputs_embeds is None:
|
|
||||||
inputs_embeds = self.wte(input_ids)
|
|
||||||
|
|
||||||
hidden_states = inputs_embeds
|
|
||||||
|
|
||||||
if token_type_ids is not None:
|
|
||||||
token_type_embeds = self.wte(token_type_ids)
|
|
||||||
hidden_states = hidden_states + token_type_embeds
|
|
||||||
|
|
||||||
hidden_states = self.drop(hidden_states)
|
|
||||||
|
|
||||||
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
|
||||||
|
|
||||||
if self.gradient_checkpointing and self.training:
|
|
||||||
if use_cache:
|
|
||||||
logger.warning_once(
|
|
||||||
"`use_cache=True` is incompatible with gradient checkpointing."
|
|
||||||
"Setting `use_cache=False`..."
|
|
||||||
)
|
|
||||||
use_cache = False
|
|
||||||
|
|
||||||
presents = () if use_cache else None
|
|
||||||
all_self_attentions = () if output_attentions else None
|
|
||||||
all_hidden_states = () if output_hidden_states else None
|
|
||||||
|
|
||||||
# Repeat cos sin here, call only once for each token.
|
|
||||||
# If put this to attension forward, it will generate too many times.
|
|
||||||
if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing():
|
|
||||||
# The logic to conditionally copy to GPU could not be traced, so we do this
|
|
||||||
# every time in the torch.fx case
|
|
||||||
embed_positions = get_embed_positions(self.embed_positions, position_ids)
|
|
||||||
else:
|
|
||||||
embed_positions, self.embed_positions = get_new_embed_positions(position_ids,
|
|
||||||
self.embed_positions)
|
|
||||||
|
|
||||||
repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1])
|
|
||||||
sincos = torch.gather(embed_positions, 1, repeated_position_ids)
|
|
||||||
sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1)
|
|
||||||
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
|
|
||||||
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
|
|
||||||
|
|
||||||
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
|
||||||
# Model parallel
|
|
||||||
if self.model_parallel:
|
|
||||||
torch.cuda.set_device(hidden_states.device)
|
|
||||||
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
|
||||||
if layer_past is not None:
|
|
||||||
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
|
||||||
# Ensure that attention_mask is always on the same device as hidden_states
|
|
||||||
if attention_mask is not None:
|
|
||||||
attention_mask = attention_mask.to(hidden_states.device)
|
|
||||||
if isinstance(head_mask, torch.Tensor):
|
|
||||||
head_mask = head_mask.to(hidden_states.device)
|
|
||||||
if output_hidden_states:
|
|
||||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
||||||
|
|
||||||
if self.gradient_checkpointing and self.training:
|
|
||||||
outputs = self._gradient_checkpointing_func(
|
|
||||||
block.__call__,
|
|
||||||
hidden_states,
|
|
||||||
None,
|
|
||||||
attention_mask,
|
|
||||||
position_ids,
|
|
||||||
head_mask[i],
|
|
||||||
use_cache,
|
|
||||||
output_attentions,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
outputs = block(
|
|
||||||
hidden_states=hidden_states,
|
|
||||||
layer_past=layer_past,
|
|
||||||
attention_mask=attention_mask,
|
|
||||||
position_ids=position_ids,
|
|
||||||
head_mask=head_mask[i],
|
|
||||||
use_cache=use_cache,
|
|
||||||
rotary_emb=(sin, cos),
|
|
||||||
output_attentions=output_attentions,
|
|
||||||
)
|
|
||||||
|
|
||||||
hidden_states = outputs[0]
|
|
||||||
if use_cache is True:
|
|
||||||
presents = presents + (outputs[1],)
|
|
||||||
|
|
||||||
if output_attentions:
|
|
||||||
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
|
||||||
|
|
||||||
# Model Parallel: If it's the last layer for that device, put things on the next device
|
|
||||||
if self.model_parallel:
|
|
||||||
for k, v in self.device_map.items():
|
|
||||||
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
|
||||||
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
|
||||||
|
|
||||||
hidden_states = self.ln_f(hidden_states)
|
|
||||||
|
|
||||||
hidden_states = hidden_states.view(output_shape)
|
|
||||||
# Add last hidden state
|
|
||||||
if output_hidden_states:
|
|
||||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
||||||
|
|
||||||
if not return_dict:
|
|
||||||
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions]
|
|
||||||
if v is not None)
|
|
||||||
|
|
||||||
return BaseModelOutputWithPast(
|
|
||||||
last_hidden_state=hidden_states,
|
|
||||||
past_key_values=presents,
|
|
||||||
hidden_states=all_hidden_states,
|
|
||||||
attentions=all_self_attentions,
|
|
||||||
)
|
|
||||||
|
|
@ -168,7 +168,7 @@ def should_use_fuse_rope(hidden_states, position_ids, training):
|
||||||
|
|
||||||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
|
||||||
if model_family in ["llama", "baichuan", "internlm", "aquila", "gpt_neox", "mistral",
|
if model_family in ["llama", "baichuan", "internlm", "aquila", "gpt_neox", "mistral",
|
||||||
"mixtral", "qwen2", "yuan", "stablelm", "qwen2_moe"]:
|
"qwen2", "yuan", "stablelm", "qwen2_moe"]:
|
||||||
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
||||||
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||||
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||||
|
|
@ -183,7 +183,7 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
|
||||||
q_embed = (q * cos) + (rotate_half(q) * sin)
|
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||||||
k_embed = (k * cos) + (rotate_half(k) * sin)
|
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||||||
return q_embed, k_embed
|
return q_embed, k_embed
|
||||||
elif model_family in ["gptj", "chatglm"]:
|
elif model_family in ["chatglm"]:
|
||||||
q_embed = (q * cos) + (rotate_every_two(q) * sin)
|
q_embed = (q * cos) + (rotate_every_two(q) * sin)
|
||||||
k_embed = (k * cos) + (rotate_every_two(k) * sin)
|
k_embed = (k * cos) + (rotate_every_two(k) * sin)
|
||||||
return q_embed, k_embed
|
return q_embed, k_embed
|
||||||
|
|
@ -192,19 +192,6 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
|
||||||
f"{model_family} is not supported.")
|
f"{model_family} is not supported.")
|
||||||
|
|
||||||
|
|
||||||
def apply_ipex_rotate_every_two(q, k, cos, sin):
|
|
||||||
# ipex's apply_rotary_embedding_two_qk can change the origin storage,
|
|
||||||
# so q/k will get the result directly.
|
|
||||||
from ipex_llm.transformers.utils import get_ipex_version
|
|
||||||
if get_ipex_version() >= "2.1.10+xpu":
|
|
||||||
torch.ops.torch_ipex.apply_rotary_embedding_two_qk(
|
|
||||||
q, k, sin, cos, q, k
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
torch.ops.torch_ipex.apply_rotary_embedding(q, sin, cos, q)
|
|
||||||
torch.ops.torch_ipex.apply_rotary_embedding(k, sin, cos, k)
|
|
||||||
|
|
||||||
|
|
||||||
def is_enough_kv_cache_room_4_36(past_key_value, idx, seq_len=1):
|
def is_enough_kv_cache_room_4_36(past_key_value, idx, seq_len=1):
|
||||||
# to determinate if is enough kv cache room in transformers==4.36
|
# to determinate if is enough kv cache room in transformers==4.36
|
||||||
# seq_len for current seq len
|
# seq_len for current seq len
|
||||||
|
|
|
||||||
|
|
@ -432,8 +432,7 @@ def _check_and_extend_kv_cache(past_key_values, max_step_draft, kv_alloc_block_l
|
||||||
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_31, \
|
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_31, \
|
||||||
extend_kv_cache
|
extend_kv_cache
|
||||||
enough_kv_room = True
|
enough_kv_room = True
|
||||||
if model_type not in ["chatglm", "qwen", "baichuan", "llama", "mistral",
|
if model_type not in ["chatglm", "qwen", "baichuan", "llama", "mistral", "opt"]:
|
||||||
"gptj", "opt"]:
|
|
||||||
return past_key_values, False
|
return past_key_values, False
|
||||||
cache_k = past_key_values[0][0]
|
cache_k = past_key_values[0][0]
|
||||||
if model_type == "chatglm":
|
if model_type == "chatglm":
|
||||||
|
|
@ -527,7 +526,7 @@ def _crop_past_key_values(self, past_key_values, new_cache_size, _enable_ipex=Fa
|
||||||
v[:-(new_cache_size), :, :, :])
|
v[:-(new_cache_size), :, :, :])
|
||||||
for k, v in past_key_values
|
for k, v in past_key_values
|
||||||
]
|
]
|
||||||
elif self.config.model_type in ["baichuan", "gptj"]:
|
elif self.config.model_type in ["baichuan"]:
|
||||||
past_key_values = [
|
past_key_values = [
|
||||||
(k[:, :, :-(new_cache_size), :],
|
(k[:, :, :-(new_cache_size), :],
|
||||||
v[:, :, :-(new_cache_size), :])
|
v[:, :, :-(new_cache_size), :])
|
||||||
|
|
@ -796,13 +795,6 @@ def _non_cpu_ipex_verify(self, verify_input_ids, past_key_values, cur_attention_
|
||||||
device=verify_input_ids.device)
|
device=verify_input_ids.device)
|
||||||
position_ids = position_ids.unsqueeze(0).repeat(1, 1) + past_key_value_len
|
position_ids = position_ids.unsqueeze(0).repeat(1, 1) + past_key_value_len
|
||||||
forward_args["position_ids"] = position_ids
|
forward_args["position_ids"] = position_ids
|
||||||
elif self.config.model_type == "gptj":
|
|
||||||
past_length = past_key_values[0][0].size(2)
|
|
||||||
input_len = verify_input_ids.shape[1]
|
|
||||||
position_ids = torch.arange(past_length, input_len + past_length,
|
|
||||||
dtype=torch.long, device=verify_input_ids.device)
|
|
||||||
position_ids = position_ids.unsqueeze(0).view(-1, input_len)
|
|
||||||
forward_args["position_ids"] = position_ids
|
|
||||||
|
|
||||||
return self(**forward_args)
|
return self(**forward_args)
|
||||||
|
|
||||||
|
|
@ -971,10 +963,6 @@ def speculative_generate(self,
|
||||||
past_key_value_len = past_key_values[0][0].shape[0]
|
past_key_value_len = past_key_values[0][0].shape[0]
|
||||||
position_ids = torch.Tensor([[past_key_value_len + step_draft]]).long()
|
position_ids = torch.Tensor([[past_key_value_len + step_draft]]).long()
|
||||||
forward_args["position_ids"] = position_ids
|
forward_args["position_ids"] = position_ids
|
||||||
elif self.config.model_type == "gptj":
|
|
||||||
past_length = draft_past_key_values[0][0].size(2)
|
|
||||||
position_ids = torch.Tensor([[past_length]]).long().to(self.device)
|
|
||||||
forward_args["position_ids"] = position_ids
|
|
||||||
|
|
||||||
if _enable_ipex:
|
if _enable_ipex:
|
||||||
if any(keyword in self.config.model_type
|
if any(keyword in self.config.model_type
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue