fix baichuan2 13b 2k input (#10267)

This commit is contained in:
Yishuo Wang 2024-02-28 17:20:20 +08:00 committed by GitHub
parent 7244fd1ba5
commit cccb02dad1

View file

@ -242,71 +242,48 @@ def baichuan_attention_forward_13b_quantized(
proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
) )
kv_seq_len = key_states.shape[-2]
if past_key_value is None: if past_key_value is None:
# should use origin attn here kv_seq_len = key_states.shape[-2]
attn_weights = torch.matmul(query_states, k_cache, v_cache = init_fp8_kv_cache(
key_states.transpose(2, 3)) / math.sqrt(self.head_dim) bsz, self.num_heads, kv_seq_len, self.head_dim,
device=device
if attention_mask is not None: )
if q_len == 1: # inference with cache
if len(attention_mask.size()) == 4:
attention_mask = attention_mask[:, :, -1:, :]
else:
attention_mask = attention_mask[:, -1:, :]
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
)
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
attn_output = torch.matmul(attn_weights, value_states)
if use_cache:
k_cache, v_cache = init_fp8_kv_cache(
bsz, self.num_heads, kv_seq_len, self.head_dim,
device=device
)
key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
key_states, value_states)
past_key_value = (key_states, value_states)
else: else:
k_cache, v_cache = past_key_value k_cache, v_cache = past_key_value
key_states, value_states = append_fp8_kv_cache(k_cache, v_cache, key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
key_states, value_states) key_states, value_states)
past_key_value = (key_states, value_states) past_key_value = (key_states, value_states)
if query_states.size(2) != 1 or device.type != 'xpu': if query_states.size(2) != 1 or device.type != 'xpu':
key_states, value_states = restore_fp8_kv_cache(key_states, value_states, key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype) query_states.dtype)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
else: else:
import linear_q4_0 import linear_q4_0
attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states) attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states)
attn_weights = attn_weights / math.sqrt(self.head_dim) attn_weights = attn_weights / math.sqrt(self.head_dim)
if attention_mask is not None: if attention_mask is not None:
if q_len == 1: # inference with cache if q_len == 1: # inference with cache
if len(attention_mask.size()) == 4: if len(attention_mask.size()) == 4:
attention_mask = attention_mask[:, :, -1:, :] attention_mask = attention_mask[:, :, -1:, :]
else: else:
attention_mask = attention_mask[:, -1:, :] attention_mask = attention_mask[:, -1:, :]
attn_weights = attn_weights + attention_mask attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights, attn_weights = torch.max(attn_weights,
torch.tensor(torch.finfo(attn_weights.dtype).min)) torch.tensor(torch.finfo(attn_weights.dtype).min))
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1) attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
attn_weights = attn_weights.to(hidden_states.dtype)
if query_states.size(2) != 1 or device.type != 'xpu': if query_states.size(2) != 1 or device.type != 'xpu':
attn_output = torch.matmul(attn_weights, value_states) attn_output = torch.matmul(attn_weights, value_states)
else: else:
import linear_q4_0 import linear_q4_0
attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights, attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights,
value_states.transpose(-1, -2)) value_states.transpose(-1, -2))
attn_output = attn_output.transpose(1, 2) attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
@ -488,7 +465,7 @@ def baichuan_13b_gen_alibi_mask(tensor, n_head, max_pos):
return alibi_mask return alibi_mask
MASK_BLOCK_SIZE = 64 MASK_BLOCK_SIZE = 512
def baichuan_13b_get_alibi_mask(self, tensor, seq_length_with_past): def baichuan_13b_get_alibi_mask(self, tensor, seq_length_with_past):