Add mddocs index (#11411)

This commit is contained in:
Yuwen Hu 2024-06-24 15:35:18 +08:00 committed by GitHub
parent c985912ee3
commit ccb3fb357a
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 49 additions and 79 deletions

View file

@ -1,44 +0,0 @@
# LangChain API
You may run the models using the LangChain API in `ipex-llm`.
## Using Hugging Face `transformers` INT4 Format
You may run any Hugging Face *Transformers* model (with INT4 optimiztions applied) using the LangChain API as follows:
```python
from ipex_llm.langchain.llms import TransformersLLM
from ipex_llm.langchain.embeddings import TransformersEmbeddings
from langchain.chains.question_answering import load_qa_chain
embeddings = TransformersEmbeddings.from_model_id(model_id=model_path)
ipex_llm = TransformersLLM.from_model_id(model_id=model_path, ...)
doc_chain = load_qa_chain(ipex_llm, ...)
output = doc_chain.run(...)
```
> [!TIP]
> See the examples [here](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/LangChain)
## Using Native INT4 Format
You may also convert Hugging Face *Transformers* models into native INT4 format, and then run the converted models using the LangChain API as follows.
> [!NOTE]
> - Currently only llama/bloom/gptneox/starcoder model families are supported; for other models, you may use the Hugging Face ``transformers`` INT4 format as described [above](./langchain_api.md#using-hugging-face-transformers-int4-format).
> - You may choose the corresponding API developed for specific native models to load the converted model.
```python
from ipex_llm.langchain.llms import LlamaLLM
from ipex_llm.langchain.embeddings import LlamaEmbeddings
from langchain.chains.question_answering import load_qa_chain
# switch to GptneoxEmbeddings/BloomEmbeddings/StarcoderEmbeddings to load other models
embeddings = LlamaEmbeddings(model_path='/path/to/converted/model.bin')
# switch to GptneoxLLM/BloomLLM/StarcoderLLM to load other models
ipex_llm = LlamaLLM(model_path='/path/to/converted/model.bin')
doc_chain = load_qa_chain(ipex_llm, ...)
doc_chain.run(...)
```

View file

@ -1,29 +0,0 @@
# Native Format
You may also convert Hugging Face *Transformers* models into native INT4 format for maximum performance as follows.
> [!NOTE]
> Currently only llama/bloom/gptneox/starcoder/chatglm model families are supported; you may use the corresponding API to load the converted model. (For other models, you can use the Hugging Face ``transformers`` format as described [here](./hugging_face_format.md))
```python
# convert the model
from ipex_llm import llm_convert
ipex_llm_path = llm_convert(model='/path/to/model/',
outfile='/path/to/output/',
outtype='int4',
model_family="llama")
# load the converted model
# switch to ChatGLMForCausalLM/GptneoxForCausalLM/BloomForCausalLM/StarcoderForCausalLM to load other models
from ipex_llm.transformers import LlamaForCausalLM
llm = LlamaForCausalLM.from_pretrained("/path/to/output/model.bin", native=True, ...)
# run the converted model
input_ids = llm.tokenize(prompt)
output_ids = llm.generate(input_ids, ...)
output = llm.batch_decode(output_ids)
```
> [!NOTE]
> See the complete example [here](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/Native-Models)

View file

@ -1,6 +0,0 @@
# `transformers`-style API
You may run the LLMs using `transformers`-style API in `ipex-llm`.
* [Hugging Face `transformers` Format](./hugging_face_format.md)
* [Native Format](./native_format.md)

49
docs/mddocs/README.md Normal file
View file

@ -0,0 +1,49 @@
# IPEX-LLM Documentation
## Table of Contents
- [LLM in 5 minutes](./Overview/llm.md)
- [Installation](./Overview/install.md)
- [CPU](./Overview/install_cpu.md)
- [GPU](./Overview/install_gpu.md)
- [Docker Guides](./DockerGuides/)
- [Overview of IPEX-LLM Containers for Intel GPU](./DockerGuides/docker_windows_gpu.md)
- [Python Inference using IPEX-LLM on Intel GPU](./DockerGuides/docker_pytorch_inference_gpu.md)
- [Run/Develop PyTorch in VSCode with Docker on Intel GPU](./DockerGuides/docker_run_pytorch_inference_in_vscode.md)
- [Run llama.cpp/Ollama/Open-WebUI on an Intel GPU via Docker](./DockerGuides/docker_cpp_xpu_quickstart.md)
- [FastChat Serving with IPEX-LLM on Intel GPUs via docker](./DockerGuides/fastchat_docker_quickstart.md)
- [vLLM Serving with IPEX-LLM on Intel GPUs via Docker](./DockerGuides/vllm_docker_quickstart.md)
- [vLLM Serving with IPEX-LLM on Intel CPU via Docker](./DockerGuides/vllm_cpu_docker_quickstart.md)
- [Quickstart](https://github.com/intel-analytics/ipex-llm/tree/main/docs/mddocs/Quickstart/)
- [`bigdl-llm` Migration Guide](./Quickstart/bigdl_llm_migration.md)
- [Install IPEX-LLM on Linux with Intel GPU](./Quickstart/install_linux_gpu.md)
- [Install IPEX-LLM on Windows with Intel GPU](./Quickstart/install_windows_gpu.md)
- [Run Local RAG using Langchain-Chatchat on Intel CPU and GPU](./Quickstart/chatchat_quickstart.md)
- [Run Text Generation WebUI on Intel GPU](./Quickstart/webui_quickstart.md)
- [Run Open WebUI with Intel GPU](./Quickstart/open_webui_with_ollama_quickstart.md)
- [Run PrivateGPT with IPEX-LLM on Intel GPU](./Quickstart/privateGPT_quickstart.md)
- [Run Coding Copilot in VSCode with Intel GPU](./Quickstart/continue_quickstart.md)
- [Run Dify on Intel GPU](./Quickstart/dify_quickstart.md)
- [Run Performance Benchmarking with IPEX-LLM](./Quickstart/benchmark_quickstart.md)
- [Run llama.cpp with IPEX-LLM on Intel GPU](./Quickstart/llama_cpp_quickstart.md)
- [Run Ollama with IPEX-LLM on Intel GPU](./Quickstart/ollama_quickstart.md)
- [Run Llama 3 on Intel GPU using llama.cpp and ollama with IPEX-LLM](./Quickstart/llama3_llamacpp_ollama_quickstart.md)
- [Serving using IPEX-LLM and FastChat](./Quickstart/fastchat_quickstart.md)
- [Serving using IPEX-LLM and vLLM on Intel GPU](./Quickstart/vLLM_quickstart.md)
- [Finetune LLM with Axolotl on Intel GPU](./Quickstart/axolotl_quickstart.md)
- [Run IPEX-LLM serving on Multiple Intel GPUs using DeepSpeed AutoTP and FastApi](./Quickstart/deepspeed_autotp_fastapi_quickstart.md)
- [Run RAGFlow with IPEX-LLM on Intel GPU](./Quickstart/ragflow_quickstart.md)
- [Key Features](./Overview/KeyFeatures/)
- [PyTorch API](./Overview/KeyFeatures/optimize_model.md)
- [`transformers`-style API](./Overview/KeyFeatures/hugging_face_format.md)
- [GPU Supports](./Overview/KeyFeatures/gpu_supports.md)
- [Inference on GPU](./Overview/KeyFeatures/inference_on_gpu.md)
- [Finetune (QLoRA)](./Overview/KeyFeatures/finetune.md)
- [Multi Intel GPUs selection](./Overview/KeyFeatures/multi_gpus_selection.md)
- [Examples](../../python/llm/example/)
- [CPU](../../python/llm/example/CPU/)
- [GPU](../../python/llm/example/GPU/)
- [API Reference](./PythonAPI/)
- [IPEX-LLM PyTorch API](./PythonAPI/optimize.md)
- [IPEX-LLM `transformers`-style API](./PythonAPI/transformers.md)
- [FQA](./Overview/FAQ/faq.md)