LLM: update llm benchmark scripts. (#8943)
* update llm benchmark scripts. * change tranformer_bf16 to pytorch_autocast_bf16. * add autocast in transformer int4. * revert autocast. * add "pytorch_autocast_bf16" to doc * fix comments.
This commit is contained in:
parent
7132ef6081
commit
cca84b0a64
3 changed files with 71 additions and 2 deletions
|
|
@ -20,6 +20,7 @@ test_api:
|
|||
- "transformer_int4"
|
||||
- "native_int4"
|
||||
- "optimize_model"
|
||||
- "pytorch_autocast_bf16"
|
||||
# - "transformer_int4_gpu" # on arc
|
||||
# - "optimize_model_gpu" # on arc
|
||||
```
|
||||
|
|
|
|||
|
|
@ -12,5 +12,6 @@ test_api:
|
|||
- "transformer_int4"
|
||||
- "native_int4"
|
||||
- "optimize_model"
|
||||
- "pytorch_autocast_bf16"
|
||||
# - "transformer_int4_gpu" # on arc
|
||||
# - "optimize_model_gpu" # on arc
|
||||
|
|
@ -45,6 +45,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
|
|||
result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
|
||||
elif test_api == 'optimize_model_gpu':
|
||||
result = run_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
|
||||
elif test_api == 'pytorch_autocast_bf16':
|
||||
result = run_pytorch_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
|
||||
|
||||
for in_out_pair in in_out_pairs:
|
||||
results.append([repo_id,
|
||||
|
|
@ -106,7 +108,7 @@ def run_transformer_int4(repo_id,
|
|||
warm_up,
|
||||
num_trials):
|
||||
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
from transformers import AutoTokenizer, LlamaTokenizer
|
||||
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
# Load model in 4 bit,
|
||||
|
|
@ -115,6 +117,18 @@ def run_transformer_int4(repo_id,
|
|||
if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
|
||||
model = AutoModel.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True, torch_dtype='auto')
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
elif repo_id in ['meta-llama/Llama-2-70b-chat-hf']:
|
||||
# Can be removed when issue https://github.com/analytics-zoo/nano/issues/563 is resolved.
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True,
|
||||
trust_remote_code=True, optimize_model=False)
|
||||
# Need to use LlamaTokenizer, reason please refer to issue: https://github.com/intel-analytics/BigDL/issues/8944
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
elif repo_id in ['meta-llama/Llama-2-7b-chat-hf','meta-llama/Llama-2-13b-chat-hf',
|
||||
'meta-llama/Llama-2-70b-chat-hf','decapoda-research/llama-7b-hf',
|
||||
'decapoda-research/llama-65b-hf','lmsys/vicuna-7b-v1.5',
|
||||
'lmsys/vicuna-13b-v1.3','project-baize/merged-baize-30b']:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True)
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
|
@ -139,7 +153,7 @@ def run_transformer_int4(repo_id,
|
|||
result[in_out] = []
|
||||
for i in range(num_trials + warm_up):
|
||||
st = time.perf_counter()
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len, use_cache=True)
|
||||
end = time.perf_counter()
|
||||
print("model generate cost: " + str(end - st))
|
||||
output = tokenizer.batch_decode(output_ids)
|
||||
|
|
@ -148,6 +162,59 @@ def run_transformer_int4(repo_id,
|
|||
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time])
|
||||
return result
|
||||
|
||||
def run_pytorch_autocast_bf16(repo_id,
|
||||
local_model_hub,
|
||||
in_out_pairs,
|
||||
warm_up,
|
||||
num_trials):
|
||||
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, LlamaTokenizer
|
||||
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
st = time.perf_counter()
|
||||
if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
|
||||
# TODO: need verify chatglm family run bf16.
|
||||
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).float()
|
||||
#model = AutoModel.from_pretrained(model_path, trust_remote_code=True).bfloat()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
elif repo_id in ['meta-llama/Llama-2-7b-chat-hf','meta-llama/Llama-2-13b-chat-hf',
|
||||
'meta-llama/Llama-2-70b-chat-hf','decapoda-research/llama-7b-hf',
|
||||
'decapoda-research/llama-65b-hf','lmsys/vicuna-7b-v1.5',
|
||||
'lmsys/vicuna-13b-v1.3','project-baize/merged-baize-30b']:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
|
||||
# Need to use LlamaTokenizer, reason please refer to issue: https://github.com/intel-analytics/BigDL/issues/8944
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
end = time.perf_counter()
|
||||
print(">> loading of model costs {}s".format(end - st))
|
||||
|
||||
model = BenchmarkWrapper(model)
|
||||
result = {}
|
||||
with torch.inference_mode(), torch.autocast("cpu"):
|
||||
for in_out in in_out_pairs:
|
||||
in_out_len = in_out.split("-")
|
||||
in_len = int(in_out_len[0])
|
||||
out_len = int(in_out_len[1])
|
||||
input_str = open(f"prompt/{in_len}.txt", 'r').read()
|
||||
# As different tokenizer has different encodings,
|
||||
# slice the input_ids to ensure the prompt length is required length.
|
||||
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||
input_ids = input_ids[:, :in_len]
|
||||
true_str = tokenizer.batch_decode(input_ids)[0]
|
||||
input_ids = tokenizer.encode(true_str, return_tensors="pt")
|
||||
result[in_out] = []
|
||||
print("input tokens: {}".format(input_ids.shape[1]))
|
||||
for i in range(num_trials + warm_up):
|
||||
st = time.perf_counter()
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len, use_cache=True)
|
||||
end = time.perf_counter()
|
||||
print("model generate cost: " + str(end - st))
|
||||
output = tokenizer.batch_decode(output_ids)
|
||||
print(output[0])
|
||||
if i >= warm_up:
|
||||
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time])
|
||||
return result
|
||||
|
||||
def run_optimize_model(repo_id,
|
||||
local_model_hub,
|
||||
|
|
|
|||
Loading…
Reference in a new issue