LLM: update llm benchmark scripts. (#8943)

* update llm benchmark scripts.

* change tranformer_bf16 to pytorch_autocast_bf16.

* add autocast in transformer int4.

* revert autocast.

* add "pytorch_autocast_bf16" to doc

* fix comments.
This commit is contained in:
Cengguang Zhang 2023-09-13 12:23:28 +08:00 committed by GitHub
parent 7132ef6081
commit cca84b0a64
3 changed files with 71 additions and 2 deletions

View file

@ -20,6 +20,7 @@ test_api:
- "transformer_int4" - "transformer_int4"
- "native_int4" - "native_int4"
- "optimize_model" - "optimize_model"
- "pytorch_autocast_bf16"
# - "transformer_int4_gpu" # on arc # - "transformer_int4_gpu" # on arc
# - "optimize_model_gpu" # on arc # - "optimize_model_gpu" # on arc
``` ```

View file

@ -12,5 +12,6 @@ test_api:
- "transformer_int4" - "transformer_int4"
- "native_int4" - "native_int4"
- "optimize_model" - "optimize_model"
- "pytorch_autocast_bf16"
# - "transformer_int4_gpu" # on arc # - "transformer_int4_gpu" # on arc
# - "optimize_model_gpu" # on arc # - "optimize_model_gpu" # on arc

View file

@ -45,6 +45,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials) result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
elif test_api == 'optimize_model_gpu': elif test_api == 'optimize_model_gpu':
result = run_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials) result = run_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
elif test_api == 'pytorch_autocast_bf16':
result = run_pytorch_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
for in_out_pair in in_out_pairs: for in_out_pair in in_out_pairs:
results.append([repo_id, results.append([repo_id,
@ -106,7 +108,7 @@ def run_transformer_int4(repo_id,
warm_up, warm_up,
num_trials): num_trials):
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer from transformers import AutoTokenizer, LlamaTokenizer
model_path = get_model_path(repo_id, local_model_hub) model_path = get_model_path(repo_id, local_model_hub)
# Load model in 4 bit, # Load model in 4 bit,
@ -115,6 +117,18 @@ def run_transformer_int4(repo_id,
if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']: if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
model = AutoModel.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True, torch_dtype='auto') model = AutoModel.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True, torch_dtype='auto')
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
elif repo_id in ['meta-llama/Llama-2-70b-chat-hf']:
# Can be removed when issue https://github.com/analytics-zoo/nano/issues/563 is resolved.
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True,
trust_remote_code=True, optimize_model=False)
# Need to use LlamaTokenizer, reason please refer to issue: https://github.com/intel-analytics/BigDL/issues/8944
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
elif repo_id in ['meta-llama/Llama-2-7b-chat-hf','meta-llama/Llama-2-13b-chat-hf',
'meta-llama/Llama-2-70b-chat-hf','decapoda-research/llama-7b-hf',
'decapoda-research/llama-65b-hf','lmsys/vicuna-7b-v1.5',
'lmsys/vicuna-13b-v1.3','project-baize/merged-baize-30b']:
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True)
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
else: else:
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
@ -139,7 +153,7 @@ def run_transformer_int4(repo_id,
result[in_out] = [] result[in_out] = []
for i in range(num_trials + warm_up): for i in range(num_trials + warm_up):
st = time.perf_counter() st = time.perf_counter()
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len) output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len, use_cache=True)
end = time.perf_counter() end = time.perf_counter()
print("model generate cost: " + str(end - st)) print("model generate cost: " + str(end - st))
output = tokenizer.batch_decode(output_ids) output = tokenizer.batch_decode(output_ids)
@ -148,6 +162,59 @@ def run_transformer_int4(repo_id,
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time]) result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time])
return result return result
def run_pytorch_autocast_bf16(repo_id,
local_model_hub,
in_out_pairs,
warm_up,
num_trials):
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, LlamaTokenizer
model_path = get_model_path(repo_id, local_model_hub)
st = time.perf_counter()
if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
# TODO: need verify chatglm family run bf16.
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).float()
#model = AutoModel.from_pretrained(model_path, trust_remote_code=True).bfloat()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
elif repo_id in ['meta-llama/Llama-2-7b-chat-hf','meta-llama/Llama-2-13b-chat-hf',
'meta-llama/Llama-2-70b-chat-hf','decapoda-research/llama-7b-hf',
'decapoda-research/llama-65b-hf','lmsys/vicuna-7b-v1.5',
'lmsys/vicuna-13b-v1.3','project-baize/merged-baize-30b']:
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
# Need to use LlamaTokenizer, reason please refer to issue: https://github.com/intel-analytics/BigDL/issues/8944
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
end = time.perf_counter()
print(">> loading of model costs {}s".format(end - st))
model = BenchmarkWrapper(model)
result = {}
with torch.inference_mode(), torch.autocast("cpu"):
for in_out in in_out_pairs:
in_out_len = in_out.split("-")
in_len = int(in_out_len[0])
out_len = int(in_out_len[1])
input_str = open(f"prompt/{in_len}.txt", 'r').read()
# As different tokenizer has different encodings,
# slice the input_ids to ensure the prompt length is required length.
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_ids = tokenizer.encode(true_str, return_tensors="pt")
result[in_out] = []
print("input tokens: {}".format(input_ids.shape[1]))
for i in range(num_trials + warm_up):
st = time.perf_counter()
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len, use_cache=True)
end = time.perf_counter()
print("model generate cost: " + str(end - st))
output = tokenizer.batch_decode(output_ids)
print(output[0])
if i >= warm_up:
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time])
return result
def run_optimize_model(repo_id, def run_optimize_model(repo_id,
local_model_hub, local_model_hub,