LLM: update llm benchmark scripts. (#8943)
* update llm benchmark scripts. * change tranformer_bf16 to pytorch_autocast_bf16. * add autocast in transformer int4. * revert autocast. * add "pytorch_autocast_bf16" to doc * fix comments.
This commit is contained in:
		
							parent
							
								
									7132ef6081
								
							
						
					
					
						commit
						cca84b0a64
					
				
					 3 changed files with 71 additions and 2 deletions
				
			
		| 
						 | 
				
			
			@ -20,6 +20,7 @@ test_api:
 | 
			
		|||
  - "transformer_int4"
 | 
			
		||||
  - "native_int4"
 | 
			
		||||
  - "optimize_model"
 | 
			
		||||
  - "pytorch_autocast_bf16"
 | 
			
		||||
  # - "transformer_int4_gpu"  # on arc
 | 
			
		||||
  # - "optimize_model_gpu"  # on arc
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -12,5 +12,6 @@ test_api:
 | 
			
		|||
  - "transformer_int4"
 | 
			
		||||
  - "native_int4"
 | 
			
		||||
  - "optimize_model"
 | 
			
		||||
  - "pytorch_autocast_bf16"
 | 
			
		||||
  # - "transformer_int4_gpu"  # on arc
 | 
			
		||||
  # - "optimize_model_gpu"  # on arc
 | 
			
		||||
| 
						 | 
				
			
			@ -45,6 +45,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
 | 
			
		|||
        result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
 | 
			
		||||
    elif test_api == 'optimize_model_gpu':
 | 
			
		||||
        result = run_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
 | 
			
		||||
    elif test_api == 'pytorch_autocast_bf16':
 | 
			
		||||
        result = run_pytorch_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
 | 
			
		||||
 | 
			
		||||
    for in_out_pair in in_out_pairs:
 | 
			
		||||
        results.append([repo_id,
 | 
			
		||||
| 
						 | 
				
			
			@ -106,7 +108,7 @@ def run_transformer_int4(repo_id,
 | 
			
		|||
                         warm_up,
 | 
			
		||||
                         num_trials):
 | 
			
		||||
    from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
 | 
			
		||||
    from transformers import AutoTokenizer
 | 
			
		||||
    from transformers import AutoTokenizer, LlamaTokenizer
 | 
			
		||||
 | 
			
		||||
    model_path = get_model_path(repo_id, local_model_hub)
 | 
			
		||||
    # Load model in 4 bit,
 | 
			
		||||
| 
						 | 
				
			
			@ -115,6 +117,18 @@ def run_transformer_int4(repo_id,
 | 
			
		|||
    if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
 | 
			
		||||
        model = AutoModel.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True, torch_dtype='auto')
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    elif repo_id in ['meta-llama/Llama-2-70b-chat-hf']:
 | 
			
		||||
        # Can be removed when issue https://github.com/analytics-zoo/nano/issues/563 is resolved.
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True,
 | 
			
		||||
                                                     trust_remote_code=True, optimize_model=False)
 | 
			
		||||
        # Need to use LlamaTokenizer, reason please refer to issue: https://github.com/intel-analytics/BigDL/issues/8944
 | 
			
		||||
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    elif repo_id in ['meta-llama/Llama-2-7b-chat-hf','meta-llama/Llama-2-13b-chat-hf',
 | 
			
		||||
                     'meta-llama/Llama-2-70b-chat-hf','decapoda-research/llama-7b-hf',
 | 
			
		||||
                     'decapoda-research/llama-65b-hf','lmsys/vicuna-7b-v1.5',
 | 
			
		||||
                     'lmsys/vicuna-13b-v1.3','project-baize/merged-baize-30b']:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True)
 | 
			
		||||
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True)
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
| 
						 | 
				
			
			@ -139,7 +153,7 @@ def run_transformer_int4(repo_id,
 | 
			
		|||
            result[in_out] = []
 | 
			
		||||
            for i in range(num_trials + warm_up):
 | 
			
		||||
                st = time.perf_counter()
 | 
			
		||||
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
 | 
			
		||||
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len, use_cache=True)
 | 
			
		||||
                end = time.perf_counter()
 | 
			
		||||
                print("model generate cost: " + str(end - st))
 | 
			
		||||
                output = tokenizer.batch_decode(output_ids)
 | 
			
		||||
| 
						 | 
				
			
			@ -148,6 +162,59 @@ def run_transformer_int4(repo_id,
 | 
			
		|||
                    result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time])
 | 
			
		||||
    return result
 | 
			
		||||
 | 
			
		||||
def run_pytorch_autocast_bf16(repo_id,
 | 
			
		||||
                         local_model_hub,
 | 
			
		||||
                         in_out_pairs,
 | 
			
		||||
                         warm_up,
 | 
			
		||||
                         num_trials):
 | 
			
		||||
    from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, LlamaTokenizer
 | 
			
		||||
 | 
			
		||||
    model_path = get_model_path(repo_id, local_model_hub)
 | 
			
		||||
    st = time.perf_counter()
 | 
			
		||||
    if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
 | 
			
		||||
        # TODO: need verify chatglm family run bf16.
 | 
			
		||||
        model = AutoModel.from_pretrained(model_path, trust_remote_code=True).float()
 | 
			
		||||
        #model = AutoModel.from_pretrained(model_path, trust_remote_code=True).bfloat()
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    elif repo_id in ['meta-llama/Llama-2-7b-chat-hf','meta-llama/Llama-2-13b-chat-hf',
 | 
			
		||||
                     'meta-llama/Llama-2-70b-chat-hf','decapoda-research/llama-7b-hf',
 | 
			
		||||
                     'decapoda-research/llama-65b-hf','lmsys/vicuna-7b-v1.5',
 | 
			
		||||
                     'lmsys/vicuna-13b-v1.3','project-baize/merged-baize-30b']:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
        # Need to use LlamaTokenizer, reason please refer to issue: https://github.com/intel-analytics/BigDL/issues/8944
 | 
			
		||||
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    end = time.perf_counter()
 | 
			
		||||
    print(">> loading of model costs {}s".format(end - st))
 | 
			
		||||
 | 
			
		||||
    model = BenchmarkWrapper(model)
 | 
			
		||||
    result = {}
 | 
			
		||||
    with torch.inference_mode(), torch.autocast("cpu"):
 | 
			
		||||
        for in_out in in_out_pairs:
 | 
			
		||||
            in_out_len = in_out.split("-")
 | 
			
		||||
            in_len = int(in_out_len[0])
 | 
			
		||||
            out_len = int(in_out_len[1])
 | 
			
		||||
            input_str = open(f"prompt/{in_len}.txt", 'r').read()
 | 
			
		||||
            # As different tokenizer has different encodings,
 | 
			
		||||
            # slice the input_ids to ensure the prompt length is required length.
 | 
			
		||||
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
			
		||||
            input_ids = input_ids[:, :in_len]
 | 
			
		||||
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
			
		||||
            input_ids = tokenizer.encode(true_str, return_tensors="pt")
 | 
			
		||||
            result[in_out] = []
 | 
			
		||||
            print("input tokens: {}".format(input_ids.shape[1]))
 | 
			
		||||
            for i in range(num_trials + warm_up):
 | 
			
		||||
                st = time.perf_counter()
 | 
			
		||||
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len, use_cache=True)
 | 
			
		||||
                end = time.perf_counter()
 | 
			
		||||
                print("model generate cost: " + str(end - st))
 | 
			
		||||
                output = tokenizer.batch_decode(output_ids)
 | 
			
		||||
                print(output[0])
 | 
			
		||||
                if i >= warm_up:
 | 
			
		||||
                    result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time])
 | 
			
		||||
    return result
 | 
			
		||||
 | 
			
		||||
def run_optimize_model(repo_id,
 | 
			
		||||
                       local_model_hub,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue