From cc540d0c34f678f312cb699a2a34c7a27da30dab Mon Sep 17 00:00:00 2001 From: Yuwen Hu <54161268+Oscilloscope98@users.noreply.github.com> Date: Thu, 18 Aug 2022 14:55:20 +0800 Subject: [PATCH] Update "Open in Colab" button in notebooks (#5452) * Update open in colab button from HTML-style hyperlinks to markdown image with link for notebooks in readthedocs folder * Update "Open in Colab" button for notebooks under python folder with markdown image with link --- .../Howto/how_to_train_forecaster_on_one_node.ipynb | 8 +++----- docs/readthedocs/source/doc/Nano/Tutorials/custom.ipynb | 2 +- .../source/doc/Nano/Tutorials/seq_and_func.ipynb | 2 +- 3 files changed, 5 insertions(+), 7 deletions(-) diff --git a/docs/readthedocs/source/doc/Chronos/Howto/how_to_train_forecaster_on_one_node.ipynb b/docs/readthedocs/source/doc/Chronos/Howto/how_to_train_forecaster_on_one_node.ipynb index 6224772f..1a9351c9 100644 --- a/docs/readthedocs/source/doc/Chronos/Howto/how_to_train_forecaster_on_one_node.ipynb +++ b/docs/readthedocs/source/doc/Chronos/Howto/how_to_train_forecaster_on_one_node.ipynb @@ -2,18 +2,16 @@ "cells": [ { "cell_type": "markdown", - "metadata": { - "id": "SQRh9TDkmexb" - }, + "metadata": {}, "source": [ - "![image.png]()" + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/docs/readthedocs/source/doc/Chronos/Howto/how_to_train_forecaster_on_one_node.ipynb)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "[Open in Colab Here](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/docs/readthedocs/source/doc/Chronos/Howto/how_to_train_forecaster_on_one_node.ipynb)" + "![image.png]()" ] }, { diff --git a/docs/readthedocs/source/doc/Nano/Tutorials/custom.ipynb b/docs/readthedocs/source/doc/Nano/Tutorials/custom.ipynb index fa89cabc..dfb67858 100644 --- a/docs/readthedocs/source/doc/Nano/Tutorials/custom.ipynb +++ b/docs/readthedocs/source/doc/Nano/Tutorials/custom.ipynb @@ -6,7 +6,7 @@ "id": "yzsDlbsUBsuF" }, "source": [ - "\"Open" + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/nano/notebooks/hpo/custom.ipynb)" ] }, { diff --git a/docs/readthedocs/source/doc/Nano/Tutorials/seq_and_func.ipynb b/docs/readthedocs/source/doc/Nano/Tutorials/seq_and_func.ipynb index c4c4a3e6..816ef75c 100644 --- a/docs/readthedocs/source/doc/Nano/Tutorials/seq_and_func.ipynb +++ b/docs/readthedocs/source/doc/Nano/Tutorials/seq_and_func.ipynb @@ -6,7 +6,7 @@ "id": "pDIKqAcwmexW" }, "source": [ - "\"Open" + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/nano/notebooks/hpo/seq_and_func.ipynb)" ] }, {