parent
							
								
									1d062e24db
								
							
						
					
					
						commit
						cbe24cc7e6
					
				
					 3 changed files with 89 additions and 0 deletions
				
			
		| 
						 | 
				
			
			@ -20,6 +20,7 @@ test_api:
 | 
			
		|||
  # - "transformer_autocast_bf16"
 | 
			
		||||
  # - "bigdl_ipex_bf16"
 | 
			
		||||
  # - "bigdl_ipex_int4"
 | 
			
		||||
  # - "bigdl_ipex_int8"
 | 
			
		||||
  # - "ipex_fp16_gpu" # on Intel GPU
 | 
			
		||||
  # - "bigdl_fp16_gpu" # on Intel GPU
 | 
			
		||||
  # - "transformer_int4_gpu"  # on Intel GPU
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -98,6 +98,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
 | 
			
		|||
        result = run_bigdl_ipex_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
 | 
			
		||||
    elif test_api == 'bigdl_ipex_int4':
 | 
			
		||||
        result = run_bigdl_ipex_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
 | 
			
		||||
    elif test_api == 'bigdl_ipex_int8':
 | 
			
		||||
        result = run_bigdl_ipex_int8(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
 | 
			
		||||
    elif test_api == 'deepspeed_optimize_model_gpu':
 | 
			
		||||
        result = run_deepspeed_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -1337,6 +1339,76 @@ def run_bigdl_ipex_int4(repo_id,
 | 
			
		|||
    return result
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def run_bigdl_ipex_int8(repo_id,
 | 
			
		||||
                    local_model_hub,
 | 
			
		||||
                    in_out_pairs,
 | 
			
		||||
                    warm_up,
 | 
			
		||||
                    num_trials,
 | 
			
		||||
                    num_beams,
 | 
			
		||||
                    batch_size):
 | 
			
		||||
    from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
 | 
			
		||||
    from transformers import AutoTokenizer, LlamaTokenizer
 | 
			
		||||
 | 
			
		||||
    os.environ["BIGDL_OPT_IPEX"] = "true"
 | 
			
		||||
 | 
			
		||||
    model_path = get_model_path(repo_id, local_model_hub)
 | 
			
		||||
 | 
			
		||||
    st = time.perf_counter()
 | 
			
		||||
    if repo_id in CHATGLM_IDS:
 | 
			
		||||
        model = AutoModel.from_pretrained(model_path, load_in_low_bit='sym_int8', trust_remote_code=True, torch_dtype='auto',
 | 
			
		||||
                                          use_cache=True, torchscript=True)
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    elif repo_id in LLAMA_IDS:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='sym_int8', trust_remote_code=True, torch_dtype='auto',
 | 
			
		||||
                                                     use_cache=True, torchscript=True)
 | 
			
		||||
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='sym_int8', trust_remote_code=True, torch_dtype='auto',
 | 
			
		||||
                                                     use_cache=True, torchscript=True)
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    if not hasattr(model.config, "token_latency"):
 | 
			
		||||
        model.config.token_latency = True
 | 
			
		||||
    end = time.perf_counter()
 | 
			
		||||
    load_time = end - st
 | 
			
		||||
    print(">> loading of model costs {}s".format(load_time))
 | 
			
		||||
 | 
			
		||||
    result = {}
 | 
			
		||||
    with torch.inference_mode(), torch.autocast("cpu"):
 | 
			
		||||
        for in_out in in_out_pairs:
 | 
			
		||||
            in_out_len = in_out.split("-")
 | 
			
		||||
            in_len = int(in_out_len[0])
 | 
			
		||||
            out_len = int(in_out_len[1])
 | 
			
		||||
            # As different tokenizer has different encodings,
 | 
			
		||||
            # in_len.txt maybe shorter than we need,
 | 
			
		||||
            # use much longer context to make sure input length
 | 
			
		||||
            test_length = min(in_len*2, 8192)
 | 
			
		||||
            while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
			
		||||
                test_length = test_length * 2
 | 
			
		||||
            input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
			
		||||
            # As different tokenizer has different encodings,
 | 
			
		||||
            # slice the input_ids to ensure the prompt length is required length.
 | 
			
		||||
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
			
		||||
            input_ids = input_ids[:, :in_len]
 | 
			
		||||
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
			
		||||
            input_list = [true_str] * batch_size
 | 
			
		||||
            input_ids = tokenizer(input_list, return_tensors="pt").input_ids
 | 
			
		||||
            actual_in_len = input_ids.shape[1]
 | 
			
		||||
            result[in_out] = []
 | 
			
		||||
            for i in range(num_trials + warm_up):
 | 
			
		||||
                st = time.perf_counter()
 | 
			
		||||
                output_ids, total_list = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
			
		||||
                                            num_beams=num_beams)
 | 
			
		||||
                end = time.perf_counter()
 | 
			
		||||
                print("model generate cost: " + str(end - st))
 | 
			
		||||
                output = tokenizer.batch_decode(output_ids)
 | 
			
		||||
                print(output[0])
 | 
			
		||||
                actual_out_len = output_ids.shape[1] - actual_in_len
 | 
			
		||||
                if i >= warm_up:
 | 
			
		||||
                    result[in_out].append([total_list[0], np.mean(total_list[1:]), 0,
 | 
			
		||||
                                          actual_in_len, actual_out_len, load_time])
 | 
			
		||||
    return result
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def run_deepspeed_optimize_model_gpu(repo_id,
 | 
			
		||||
                                     local_model_hub,
 | 
			
		||||
                                     in_out_pairs,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -127,6 +127,22 @@ def _ipex_optimize_model(model, rms_classes, qtype):
 | 
			
		|||
            group_size=-1,
 | 
			
		||||
        )
 | 
			
		||||
        model = ipex_quantization_flow(model, torch.bfloat16, None, qconfig, None)
 | 
			
		||||
    elif qtype == ggml_tensor_qtype["sym_int8"]:
 | 
			
		||||
        is_quantization = True
 | 
			
		||||
        is_woq = True
 | 
			
		||||
        act_quant_mode_dict = {
 | 
			
		||||
            "PER_TENSOR": ipex.quantization.WoqActQuantMode.PER_TENSOR,
 | 
			
		||||
            "PER_IC_BLOCK": ipex.quantization.WoqActQuantMode.PER_IC_BLOCK,
 | 
			
		||||
            "PER_BATCH": ipex.quantization.WoqActQuantMode.PER_BATCH,
 | 
			
		||||
            "PER_BATCH_IC_BLOCK": ipex.quantization.WoqActQuantMode.PER_BATCH_IC_BLOCK,
 | 
			
		||||
        }
 | 
			
		||||
        qconfig = ipex.quantization.get_weight_only_quant_qconfig_mapping(
 | 
			
		||||
            weight_dtype=torch.qint8,  # INT8
 | 
			
		||||
            lowp_mode=ipex.quantization.WoqLowpMode.INT8,
 | 
			
		||||
            act_quant_mode=act_quant_mode_dict["PER_IC_BLOCK"],
 | 
			
		||||
            group_size=-1,
 | 
			
		||||
        )
 | 
			
		||||
        model = ipex_quantization_flow(model, torch.bfloat16, None, qconfig, None)
 | 
			
		||||
 | 
			
		||||
    is_tpp = _using_tpp()
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue