parent
1d062e24db
commit
cbe24cc7e6
3 changed files with 89 additions and 0 deletions
|
|
@ -20,6 +20,7 @@ test_api:
|
|||
# - "transformer_autocast_bf16"
|
||||
# - "bigdl_ipex_bf16"
|
||||
# - "bigdl_ipex_int4"
|
||||
# - "bigdl_ipex_int8"
|
||||
# - "ipex_fp16_gpu" # on Intel GPU
|
||||
# - "bigdl_fp16_gpu" # on Intel GPU
|
||||
# - "transformer_int4_gpu" # on Intel GPU
|
||||
|
|
|
|||
|
|
@ -98,6 +98,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
|
|||
result = run_bigdl_ipex_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
|
||||
elif test_api == 'bigdl_ipex_int4':
|
||||
result = run_bigdl_ipex_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
|
||||
elif test_api == 'bigdl_ipex_int8':
|
||||
result = run_bigdl_ipex_int8(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
|
||||
elif test_api == 'deepspeed_optimize_model_gpu':
|
||||
result = run_deepspeed_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size)
|
||||
|
||||
|
|
@ -1337,6 +1339,76 @@ def run_bigdl_ipex_int4(repo_id,
|
|||
return result
|
||||
|
||||
|
||||
def run_bigdl_ipex_int8(repo_id,
|
||||
local_model_hub,
|
||||
in_out_pairs,
|
||||
warm_up,
|
||||
num_trials,
|
||||
num_beams,
|
||||
batch_size):
|
||||
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, LlamaTokenizer
|
||||
|
||||
os.environ["BIGDL_OPT_IPEX"] = "true"
|
||||
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
|
||||
st = time.perf_counter()
|
||||
if repo_id in CHATGLM_IDS:
|
||||
model = AutoModel.from_pretrained(model_path, load_in_low_bit='sym_int8', trust_remote_code=True, torch_dtype='auto',
|
||||
use_cache=True, torchscript=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
elif repo_id in LLAMA_IDS:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='sym_int8', trust_remote_code=True, torch_dtype='auto',
|
||||
use_cache=True, torchscript=True)
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='sym_int8', trust_remote_code=True, torch_dtype='auto',
|
||||
use_cache=True, torchscript=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
if not hasattr(model.config, "token_latency"):
|
||||
model.config.token_latency = True
|
||||
end = time.perf_counter()
|
||||
load_time = end - st
|
||||
print(">> loading of model costs {}s".format(load_time))
|
||||
|
||||
result = {}
|
||||
with torch.inference_mode(), torch.autocast("cpu"):
|
||||
for in_out in in_out_pairs:
|
||||
in_out_len = in_out.split("-")
|
||||
in_len = int(in_out_len[0])
|
||||
out_len = int(in_out_len[1])
|
||||
# As different tokenizer has different encodings,
|
||||
# in_len.txt maybe shorter than we need,
|
||||
# use much longer context to make sure input length
|
||||
test_length = min(in_len*2, 8192)
|
||||
while test_length not in [32, 256, 1024, 2048, 8192]:
|
||||
test_length = test_length * 2
|
||||
input_str = open(f"prompt/{test_length}.txt", 'r').read()
|
||||
# As different tokenizer has different encodings,
|
||||
# slice the input_ids to ensure the prompt length is required length.
|
||||
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||
input_ids = input_ids[:, :in_len]
|
||||
true_str = tokenizer.batch_decode(input_ids)[0]
|
||||
input_list = [true_str] * batch_size
|
||||
input_ids = tokenizer(input_list, return_tensors="pt").input_ids
|
||||
actual_in_len = input_ids.shape[1]
|
||||
result[in_out] = []
|
||||
for i in range(num_trials + warm_up):
|
||||
st = time.perf_counter()
|
||||
output_ids, total_list = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
||||
num_beams=num_beams)
|
||||
end = time.perf_counter()
|
||||
print("model generate cost: " + str(end - st))
|
||||
output = tokenizer.batch_decode(output_ids)
|
||||
print(output[0])
|
||||
actual_out_len = output_ids.shape[1] - actual_in_len
|
||||
if i >= warm_up:
|
||||
result[in_out].append([total_list[0], np.mean(total_list[1:]), 0,
|
||||
actual_in_len, actual_out_len, load_time])
|
||||
return result
|
||||
|
||||
|
||||
def run_deepspeed_optimize_model_gpu(repo_id,
|
||||
local_model_hub,
|
||||
in_out_pairs,
|
||||
|
|
|
|||
|
|
@ -127,6 +127,22 @@ def _ipex_optimize_model(model, rms_classes, qtype):
|
|||
group_size=-1,
|
||||
)
|
||||
model = ipex_quantization_flow(model, torch.bfloat16, None, qconfig, None)
|
||||
elif qtype == ggml_tensor_qtype["sym_int8"]:
|
||||
is_quantization = True
|
||||
is_woq = True
|
||||
act_quant_mode_dict = {
|
||||
"PER_TENSOR": ipex.quantization.WoqActQuantMode.PER_TENSOR,
|
||||
"PER_IC_BLOCK": ipex.quantization.WoqActQuantMode.PER_IC_BLOCK,
|
||||
"PER_BATCH": ipex.quantization.WoqActQuantMode.PER_BATCH,
|
||||
"PER_BATCH_IC_BLOCK": ipex.quantization.WoqActQuantMode.PER_BATCH_IC_BLOCK,
|
||||
}
|
||||
qconfig = ipex.quantization.get_weight_only_quant_qconfig_mapping(
|
||||
weight_dtype=torch.qint8, # INT8
|
||||
lowp_mode=ipex.quantization.WoqLowpMode.INT8,
|
||||
act_quant_mode=act_quant_mode_dict["PER_IC_BLOCK"],
|
||||
group_size=-1,
|
||||
)
|
||||
model = ipex_quantization_flow(model, torch.bfloat16, None, qconfig, None)
|
||||
|
||||
is_tpp = _using_tpp()
|
||||
|
||||
|
|
|
|||
Loading…
Reference in a new issue