Add html report of ppl (#10218)

* remove include and language option, select the corresponding dataset based on the model name in Run

* change the nightly test time

* change the nightly test time of harness and ppl

* save the ppl result to json file

* generate csv file and print table result

* generate html

* modify the way to get parent folder

* update html in parent folder

* add llm-ppl-summary and llm-ppl-summary-html

* modify echo single result

* remove download fp16.csv

* change model name of PR

* move ppl nightly related files to llm/test folder

* reformat

* seperate make_table from make_table_and_csv.py

* separate make_csv from make_table_and_csv.py

* update llm-ppl-html

* remove comment

* add Download fp16.results
This commit is contained in:
hxsz1997 2024-02-27 17:37:08 +08:00 committed by GitHub
parent 6d60982746
commit cba61a2909
8 changed files with 588 additions and 3 deletions

View file

@ -174,4 +174,106 @@ jobs:
--precisions ${{ matrix.precision }} \
--device ${{ matrix.device }} \
--dataset_path ${DATASET_DIR} \
--language ${LANGUAGE}
--language ${LANGUAGE} \
--output_path results
- uses: actions/upload-artifact@v3
with:
name: ppl_results
path:
${{ github.workspace }}/python/llm/dev/benchmark/perplexity/results/**
- name: echo single result
shell: bash
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/perplexity/results/
run: |
if [[ "${{ matrix.model_name }}" == *"chatglm"* || "${{ matrix.model_name }}" == *"Baichuan"* ]]; then
LANGUAGE="zh"
else
LANGUAGE="en"
fi
cat ${{ matrix.model_name }}/${{ matrix.device }}/${{ matrix.precision }}/${LANGUAGE}/result.json
llm-ppl-summary:
if: ${{ always() }}
needs: llm-ppl-evaluation
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
- name: Set up Python 3.9
uses: actions/setup-python@v4
with:
python-version: 3.9
- name: Install dependencies
shell: bash
run: |
pip install --upgrade pip
pip install jsonlines pytablewriter regex
- name: Download all results
uses: actions/download-artifact@v3
with:
name: ppl_results
path: results
- name: Summarize the results
shell: bash
run: |
ls results
python ${{ github.workspace }}/python/llm/dev/benchmark/perplexity/make_table.py results
llm-ppl-html:
if: ${{github.event_name == 'schedule' || github.event_name == 'pull_request'}}
needs: [llm-ppl-evaluation]
runs-on: ["self-hosted", "llm", "accuracy1", "accuracy-nightly"]
steps:
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
- name: Set up Python 3.9
uses: actions/setup-python@v4
with:
python-version: 3.9
- name: Install dependencies
shell: bash
run: |
pip install --upgrade pip
pip install jsonlines pytablewriter regex
pip install pandas==1.5.3
- name: Set output path
shell: bash
run: |
echo "DATE=$(date +%Y-%m-%d)" >> $GITHUB_ENV
if ${{github.event_name == 'pull_request'}}; then
echo 'ACC_FOLDER=/home/arda/ppl-action-runners/pr-accuracy-data' >> $GITHUB_ENV
fi
if ${{github.event_name == 'schedule'}}; then
echo 'ACC_FOLDER=/home/arda/ppl-action-runners/nightly-accuracy-data' >> $GITHUB_ENV
fi
- name: Download ppl results
uses: actions/download-artifact@v3
with:
name: ppl_results
path: ${{ env.ACC_FOLDER}}/${{ env.DATE }}
# Save fp16.csv in the parent folder of env.nightly_folder
- name: Download fp16.results
shell: bash
run: |
wget https://raw.githubusercontent.com/intel-analytics/BigDL/main/python/llm/test/benchmark/perplexity/fp16.csv -O $ACC_FOLDER/../fp16.csv
ls $ACC_FOLDER/..
- name: Write to CSV
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/perplexity
shell: bash
run: |
ls $ACC_FOLDER/$DATE
python make_csv.py $ACC_FOLDER/$DATE $ACC_FOLDER
- name: Update HTML
working-directory: ${{ github.workspace }}/python/llm/test/benchmark/perplexity
shell: bash
run: |
python ppl_csv_to_html.py -f $ACC_FOLDER
if ${{github.event_name == 'schedule'}}; then
python update_html_in_parent_folder.py -f $ACC_FOLDER
fi

View file

@ -18,3 +18,8 @@ python run.py --model_path meta-llama/Llama-2-7b-chat-hf --precisions float16 sy
```
- The `language` argument will only take effect if `datasets` is `None`. The choices for this argument are `en, zh, all`, which stands for all the English datasets, all the Chinese datasets and all the datasets respectively during testing.
- If you want to test perplexity on pre-downloaded datasets, please specify the `<path/to/dataset>` in the `dataset_path` argument in your command.
## Summarize the results
"""python
python make_table.py <input_dir>
"""

View file

@ -0,0 +1,98 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Usage:
python make_csv.py <input_dir> <output_dir>
"""
import logging
from pytablewriter import MarkdownTableWriter, LatexTableWriter
import os
import json
import sys
import csv
import datetime
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def make_csv(result_dict, output_path=None):
current_date = datetime.datetime.now().strftime("%Y-%m-%d")
file_name = f'results_{current_date}.csv'
full_path = os.path.join(output_path, file_name) if output_path else file_name
print('Writing to', full_path)
file_name = full_path
headers = ["Index", "Model", "Precision", "en", "zh"]
with open(file_name, mode='w', newline='') as csv_file:
writer = csv.writer(csv_file)
writer.writerow(headers)
index = 0
for model, model_results in result_dict.items():
for precision, prec_results in model_results.items():
row = [index, model, precision]
for language in headers[3:]:
task_results = prec_results.get(language.lower(), None)
if task_results is None:
row.append("")
else:
result = task_results["results"]
row.append("%.4f" % result)
writer.writerow(row)
index += 1
def merge_results(path):
# loop dirs and subdirs in results dir
# for each dir, load json files
print('Read from', path)
merged_results = dict()
for dirpath, dirnames, filenames in os.walk(path):
# skip dirs without files
if not filenames:
continue
for filename in sorted([f for f in filenames if f.endswith("result.json")]):
path = os.path.join(dirpath, filename)
model, device, precision, language = dirpath.split('/')[-4:]
with open(path, "r") as f:
result_dict = json.load(f)
if model not in merged_results:
merged_results[model] = dict()
if precision not in merged_results[model]:
merged_results[model][precision] = dict()
merged_results[model][precision][language] = result_dict
return merged_results
def main(*args):
assert len(args) > 2, \
"""Usage:
python make_csv.py <input_dir> <output_dir>
"""
input_path = args[1]
output_path = args[2]
merged_results = merge_results(input_path)
make_csv(merged_results, output_path)
if __name__ == "__main__":
# when running from the harness, the first argument is the script name
# you must name the second argument and the third argument(optional) to be the input_dir and output_dir
main(*sys.argv)

View file

@ -0,0 +1,101 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Usage:
python make_table.py <input_dir>
"""
import logging
from pytablewriter import MarkdownTableWriter, LatexTableWriter
import os
import json
import sys
import csv
import datetime
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def make_table(result_dict):
"""Generate table of results."""
md_writer = MarkdownTableWriter()
latex_writer = LatexTableWriter()
md_writer.headers = ["Model", "Precision", "en", "zh"]
latex_writer.headers = ["Model", "Precision", "en", "zh"]
languages = ["en", "zh"]
values = []
for model, model_results in result_dict.items():
for precision, prec_results in model_results.items():
value = [model, precision]
for language in languages:
task_results = prec_results.get(language, None)
if task_results is None:
value.append("")
else:
result = task_results["results"]
value.append("%.4f" % result)
values.append(value)
model = ""
precision = ""
md_writer.value_matrix = values
latex_writer.value_matrix = values
# todo: make latex table look good
# print(latex_writer.dumps())
return md_writer.dumps()
def merge_results(path):
# loop dirs and subdirs in results dir
# for each dir, load json files
print('Read from', path)
merged_results = dict()
for dirpath, dirnames, filenames in os.walk(path):
# skip dirs without files
if not filenames:
continue
for filename in sorted([f for f in filenames if f.endswith("result.json")]):
path = os.path.join(dirpath, filename)
model, device, precision, language = dirpath.split('/')[-4:]
with open(path, "r") as f:
result_dict = json.load(f)
if model not in merged_results:
merged_results[model] = dict()
if precision not in merged_results[model]:
merged_results[model][precision] = dict()
merged_results[model][precision][language] = result_dict
return merged_results
def main(*args):
if len(args) > 1:
input_path = args[1]
else:
raise ValueError("Input path is required")
merged_results = merge_results(input_path)
print(make_table(merged_results))
if __name__ == "__main__":
# when running from the harness, the first argument is the script name
# you must name the second argument and the third argument(optional) to be the input_dir and output_dir
main(*sys.argv)

View file

@ -24,6 +24,7 @@ from ppl import BigDLPPL
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
import os
import json
def get_arguments():
parser = argparse.ArgumentParser()
@ -34,6 +35,7 @@ def get_arguments():
parser.add_argument("--language", required=False, type=str, default="en", choices=['en', 'zh', 'all'])
parser.add_argument("--precisions", required=False, type=str, default=None, nargs='+')
parser.add_argument("--device", type=str, default="xpu")
parser.add_argument("--output_path", default=None)
return parser.parse_args()
@ -77,6 +79,8 @@ def main():
encoded_texts.append(encoded_text)
summary = {}
output_path = args.output_path if args.output_path else "results"
model_name = os.path.basename(os.path.realpath(args.model_path))
for precision in args.precisions:
model_kwargs = {}
if precision in ggml_tensor_qtype.keys():
@ -85,9 +89,21 @@ def main():
model_kwargs['torch_dtype'] = getattr(torch, precision)
print(model_kwargs)
log_dir = f"{output_path}/{model_name}/{args.device}/{precision}/{args.language}"
os.makedirs(log_dir, exist_ok=True)
results = {}
ppl_evaluator = BigDLPPL(model_path=args.model_path, device=args.device, **model_kwargs)
ppl = ppl_evaluator.perplexity_hf(encoded_texts)
summary[precision] = ppl
results['results'] = ppl
results['config'] = {"model": model_name, "precision": precision, "device": args.device, "seq_len": args.seq_len, "language": args.language}
dumped = json.dumps(results, indent=2)
print(dumped)
if args.output_path:
with open(f"{log_dir}/result.json", "w") as f:
f.write(dumped)
print(summary)
if __name__ == "__main__":

View file

@ -0,0 +1,8 @@
Index,Model,Precision,en,zh
0,Llama-2-7b-chat-hf,fp16,4.7019,
1,chatglm2-6b,fp16,,22.321
2,chatglm3-6b,fp16,,30.1281
3,Baichuan2-7B-Chat,fp16,,10.7676
4,mpt-7b-chat,fp16,5.7882,
5,falcon-7b-instruct-with-patch,fp16,5.2532,
6,mistral-7b-v0.1,fp16,3.6597,
1 Index Model Precision en zh
2 0 Llama-2-7b-chat-hf fp16 4.7019
3 1 chatglm2-6b fp16 22.321
4 2 chatglm3-6b fp16 30.1281
5 3 Baichuan2-7B-Chat fp16 10.7676
6 4 mpt-7b-chat fp16 5.7882
7 5 falcon-7b-instruct-with-patch fp16 5.2532
8 6 mistral-7b-v0.1 fp16 3.6597

View file

@ -0,0 +1,206 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Python program to convert CSV to HTML Table
import os
import sys
import argparse
import pandas as pd
from pathlib import Path
def highlight_vals(val, max=3.0, color1='red', color2='green', color3='yellow', is_last=False):
if isinstance(val, float):
if val > max:
return 'background-color: %s' % color1
elif val <= -max:
return 'background-color: %s' % color2
elif val != 0.0 and not pd.isna(val) and is_last:
return 'background-color: %s' % color3
else:
return ''
def nonzero_min(lst):
non_zero_lst = [num for num in lst if num > 0.0]
return min(non_zero_lst) if non_zero_lst else None
def is_diffs_within_normal_range(diff_en, diff_zh, threshold=5.0):
return not any(diff < (-threshold) for diff in diff_en + diff_zh if isinstance(diff, float))
def add_to_dict(dict, key, value):
if key not in dict:
dict[key] = []
dict[key].append(value)
def best_in_dict(dict, key, value):
if key in dict:
best_value = nonzero_min(dict[key])
if best_value < value or value <= 0.0:
return best_value
return value
return value
def create_fp16_dict(fp16_path):
fp16_df = pd.read_csv(fp16_path)
fp16_dict = {}
for _, row in fp16_df.iterrows():
model = row['Model']
# Formalize the data to have 2 decimal places
fp16_dict[model] = {
'en': "{:.2f}".format(row['en']),
'zh': "{:.2f}".format(row['zh'])
}
return fp16_dict
def calculate_percentage_difference(current, fp16):
if fp16 != 'N/A' and current != 'N/A' and float(fp16) != 0:
return (float(current) - float(fp16)) / float(fp16) * 100
else:
return 'N/A'
def main():
parser = argparse.ArgumentParser(description="convert .csv file to .html file")
parser.add_argument("-f", "--folder_path", type=str, dest="folder_path",
help="The directory which stores the .csv file", default="/home/arda/yibo/BigDL/python/llm/dev/benchmark/harness")
parser.add_argument("-t", "--threshold", type=float, dest="threshold",
help="the threshold of highlight values", default=3.0)
parser.add_argument("-b", "--baseline_path", type=str, dest="baseline_path",
help="the baseline path which stores the baseline.csv file")
args = parser.parse_args()
# fp16.csv is downloaded previously under the parent folder of the folder_path
parent_dir = Path(args.folder_path).parent
fp16_path = os.path.join(parent_dir, 'fp16.csv')
fp16_dict = create_fp16_dict(fp16_path)
csv_files = []
for file_name in os.listdir(args.folder_path):
file_path = os.path.join(args.folder_path, file_name)
if os.path.isfile(file_path) and file_name.endswith(".csv"):
csv_files.append(file_path)
csv_files.sort(reverse=True)
highlight_threshold=args.threshold
latest_csv = pd.read_csv(csv_files[0], index_col=0)
daily_html=csv_files[0].split(".")[0]+".html"
# Reset index
latest_csv.reset_index(inplace=True)
diffs_within_normal_range = True
# Add display of FP16 values for each model and add percentage difference column
for task in ['en', 'zh']:
latest_csv[f'{task}_FP16'] = latest_csv['Model'].apply(lambda model: fp16_dict.get(model, {}).get(task, 'N/A'))
latest_csv[f'{task}_diff_FP16(%)'] = latest_csv.apply(lambda row: calculate_percentage_difference(row[task], row[f'{task}_FP16']), axis=1)
if len(csv_files)>1:
if args.baseline_path:
previous_csv = pd.read_csv(args.baseline_path, index_col=0)
else:
previous_csv = pd.read_csv(csv_files[1], index_col=0)
last_en=['']*len(latest_csv.index)
diff_en=['']*len(latest_csv.index)
last_zh=['']*len(latest_csv.index)
diff_zh=['']*len(latest_csv.index)
en='en'
zh='zh'
csv_dict = {}
for csv_file in csv_files:
current_csv = pd.read_csv(csv_file, index_col=0)
for current_csv_ind,current_csv_row in current_csv.iterrows():
current_csv_model=current_csv_row['Model'].strip()
current_csv_precision=current_csv_row['Precision'].strip()
current_csv_model_en=current_csv_model+'-'+current_csv_precision+'-'+'en'
current_csv_model_zh=current_csv_model+'-'+current_csv_precision+'-'+'zh'
add_to_dict(csv_dict, current_csv_model_en, current_csv_row[en])
add_to_dict(csv_dict, current_csv_model_zh, current_csv_row[zh])
for latest_csv_ind,latest_csv_row in latest_csv.iterrows():
latest_csv_model=latest_csv_row['Model'].strip()
latest_csv_precision=latest_csv_row['Precision'].strip()
latest_en=latest_csv_row[en]
latest_zh=latest_csv_row[zh]
in_previous_flag=False
for previous_csv_ind,previous_csv_row in previous_csv.iterrows():
previous_csv_model=previous_csv_row['Model'].strip()
previous_csv_precision=previous_csv_row['Precision'].strip()
if latest_csv_model==previous_csv_model and latest_csv_precision==previous_csv_precision:
previous_en=previous_csv_row[en]
previous_zh=previous_csv_row[zh]
if previous_en > 0.0 or previous_zh > 0.0:
last_en[latest_csv_ind]=previous_en
diff_en[latest_csv_ind]=round((latest_en-previous_en)*100/previous_en,2)
last_zh[latest_csv_ind]=previous_zh
diff_zh[latest_csv_ind]=round((latest_zh-previous_zh)*100/previous_zh,2)
in_previous_flag=True
if not in_previous_flag:
last_en[latest_csv_ind]=pd.NA
diff_en[latest_csv_ind]=pd.NA
last_zh[latest_csv_ind]=pd.NA
diff_zh[latest_csv_ind]=pd.NA
latest_csv.insert(loc=9,column='last_en',value=last_en)
latest_csv.insert(loc=10,column='diff_en(%)',value=diff_en)
latest_csv.insert(loc=11,column='last_zh',value=last_zh)
latest_csv.insert(loc=12,column='diff_zh(%)',value=diff_zh)
diffs_within_normal_range = is_diffs_within_normal_range(diff_en, diff_zh, threshold=highlight_threshold)
subset1=['diff_en(%)','diff_zh(%)']
columns={'en': '{:.2f}', 'zh': '{:.2f}', 'last_en': '{:.2f}', 'diff_en(%)': '{:.2f}',
'last_zh': '{:.2f}', 'diff_zh(%)': '{:.2f}'}
latest_csv.drop('Index', axis=1, inplace=True)
styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=3.0, is_last=True), subset=subset1)
for task in ['en', 'zh']:
styled_df = styled_df.applymap(lambda val: highlight_vals(val, max=highlight_threshold, is_last=False), subset=[f'{task}_diff_FP16(%)'])
# add css style to restrict width and wrap text
styled_df.set_table_styles([{
'selector': 'th, td',
'props': [('max-width', '88px'), ('word-wrap', 'break-word')]
}], overwrite=False)
html_output = styled_df.set_table_attributes("border=1").to_html()
with open(daily_html, 'w') as f:
f.write(html_output)
else:
latest_csv.to_html(daily_html)
if args.baseline_path and not diffs_within_normal_range:
print("The diffs are outside the normal range: %" + str(highlight_threshold))
return 1
return 0
if __name__ == "__main__":
sys.exit(main())

View file

@ -0,0 +1,49 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Python program to update Html in parent folder
import os
import shutil
import argparse
from pathlib import Path
def update_html_in_parent_folder(folder_path):
# Get parent folder
parent_folder = Path(folder_path).parent
# List all html files under parent folder and delete them
for html_file in parent_folder.glob('*.html'):
html_file.unlink()
# Find latest html file under folder_path
latest_html_file = max(Path(folder_path).glob('*.html'), key=os.path.getctime, default=None)
# Copy the latest html file to parent folder
if latest_html_file is not None:
shutil.copy(latest_html_file, parent_folder)
print(latest_html_file.name)
def main():
parser = argparse.ArgumentParser(description="Update HTML in parent folder.")
parser.add_argument("-f", "--folder", type=str, help="Path to the folder")
args = parser.parse_args()
update_html_in_parent_folder(args.folder)
if __name__ == "__main__":
main()