update vllm-docker-quick-start for vllm0.6.2 (#12392)
* update vllm-docker-quick-start for vllm0.6.2 * [UPDATE] rm max-num-seqs parameter in vllm-serving script
This commit is contained in:
parent
7b40f9b372
commit
cb7b08948b
1 changed files with 41 additions and 18 deletions
|
|
@ -242,15 +242,17 @@ python -m ipex_llm.vllm.xpu.entrypoints.openai.api_server \
|
||||||
--port 8000 \
|
--port 8000 \
|
||||||
--model $model \
|
--model $model \
|
||||||
--trust-remote-code \
|
--trust-remote-code \
|
||||||
--gpu-memory-utilization 0.75 \
|
--block-size 8 \
|
||||||
|
--gpu-memory-utilization 0.9 \
|
||||||
--device xpu \
|
--device xpu \
|
||||||
--dtype float16 \
|
--dtype float16 \
|
||||||
--enforce-eager \
|
--enforce-eager \
|
||||||
--load-in-low-bit sym_int4 \
|
--load-in-low-bit sym_int4 \
|
||||||
--max-model-len 4096 \
|
--max-model-len 2048 \
|
||||||
--max-num-batched-tokens 10240 \
|
--max-num-batched-tokens 4000 \
|
||||||
--max-num-seqs 12 \
|
--tensor-parallel-size 1 \
|
||||||
--tensor-parallel-size 1
|
--disable-async-output-proc \
|
||||||
|
--distributed-executor-backend ray
|
||||||
```
|
```
|
||||||
|
|
||||||
then run following command to start vllm service
|
then run following command to start vllm service
|
||||||
|
|
@ -678,8 +680,8 @@ python -m ipex_llm.vllm.xpu.entrypoints.openai.api_server \
|
||||||
--load-in-low-bit fp8 \
|
--load-in-low-bit fp8 \
|
||||||
--max-model-len 4096 \
|
--max-model-len 4096 \
|
||||||
--max-num-batched-tokens 10240 \
|
--max-num-batched-tokens 10240 \
|
||||||
--max-num-seqs 12 \
|
|
||||||
--tensor-parallel-size 1 \
|
--tensor-parallel-size 1 \
|
||||||
|
--distributed-executor-backend ray \
|
||||||
--enable-lora \
|
--enable-lora \
|
||||||
--lora-modules sql-lora=$SQL_LOARA
|
--lora-modules sql-lora=$SQL_LOARA
|
||||||
```
|
```
|
||||||
|
|
@ -742,16 +744,37 @@ vLLM Serving can be deployed as a server that implements the OpenAI API protocol
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
model="/llm/models/Meta-Llama-3.1-8B-Instruct"
|
model="/llm/models/Qwen1.5-14B-Chat"
|
||||||
served_model_name="llama-3.1-8b"
|
served_model_name="Qwen1.5-14B-Chat"
|
||||||
...
|
|
||||||
|
#export SYCL_CACHE_PERSISTENT=1
|
||||||
|
export CCL_WORKER_COUNT=4
|
||||||
|
export FI_PROVIDER=shm
|
||||||
|
export CCL_ATL_TRANSPORT=ofi
|
||||||
|
export CCL_ZE_IPC_EXCHANGE=sockets
|
||||||
|
export CCL_ATL_SHM=1
|
||||||
|
|
||||||
|
export USE_XETLA=OFF
|
||||||
|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=2
|
||||||
|
export TORCH_LLM_ALLREDUCE=0
|
||||||
|
|
||||||
|
source /opt/intel/1ccl-wks/setvars.sh
|
||||||
|
|
||||||
python -m ipex_llm.vllm.xpu.entrypoints.openai.api_server \
|
python -m ipex_llm.vllm.xpu.entrypoints.openai.api_server \
|
||||||
--served-model-name $served_model_name \
|
--served-model-name $served_model_name \
|
||||||
--port 8000 \
|
--port 8000 \
|
||||||
--model $model \
|
--model $model \
|
||||||
...
|
--trust-remote-code \
|
||||||
|
--gpu-memory-utilization 0.9 \
|
||||||
|
--device xpu \
|
||||||
|
--dtype float16 \
|
||||||
|
--enforce-eager \
|
||||||
|
--load-in-low-bit fp8 \
|
||||||
|
--max-model-len 2048 \
|
||||||
|
--max-num-batched-tokens 4000 \
|
||||||
--api-key <your-api-key> \
|
--api-key <your-api-key> \
|
||||||
--tensor-parallel-size 2
|
--tensor-parallel-size 4 \
|
||||||
|
--distributed-executor-backend ray
|
||||||
```
|
```
|
||||||
|
|
||||||
2. Send http request with `api-key` header to verify the model has deployed successfully.
|
2. Send http request with `api-key` header to verify the model has deployed successfully.
|
||||||
|
|
@ -761,7 +784,7 @@ curl http://localhost:8000/v1/completions \
|
||||||
-H "Content-Type: application/json" \
|
-H "Content-Type: application/json" \
|
||||||
-H "Authorization: Bearer <your-api-key>" \
|
-H "Authorization: Bearer <your-api-key>" \
|
||||||
-d '{
|
-d '{
|
||||||
"model": "llama-3.1-8b",
|
"model": "Qwen1.5-14B-Chat",
|
||||||
"prompt": "San Francisco is a",
|
"prompt": "San Francisco is a",
|
||||||
"max_tokens": 128
|
"max_tokens": 128
|
||||||
}'
|
}'
|
||||||
|
|
@ -793,7 +816,6 @@ docker run -itd \
|
||||||
|
|
||||||
We can set up model serving using `IPEX-LLM` as backend using FastChat, the following steps gives an example of how to deploy a demo using FastChat.
|
We can set up model serving using `IPEX-LLM` as backend using FastChat, the following steps gives an example of how to deploy a demo using FastChat.
|
||||||
|
|
||||||
|
|
||||||
1. **Start the Docker Container**
|
1. **Start the Docker Container**
|
||||||
|
|
||||||
Run the following command to launch a Docker container with device access:
|
Run the following command to launch a Docker container with device access:
|
||||||
|
|
@ -819,6 +841,7 @@ We can set up model serving using `IPEX-LLM` as backend using FastChat, the foll
|
||||||
2. **Start the FastChat Service**
|
2. **Start the FastChat Service**
|
||||||
|
|
||||||
Enter the container and start the FastChat service:
|
Enter the container and start the FastChat service:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
#/bin/bash
|
#/bin/bash
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue