[LLM] Add more transformers examples (ChatGLM) (#8521)
* Add example for chatglm v1 and other small fixes * Small fix * Small further fix * Small fix * Update based on comments & updates for client windows recommended settingts * Small fix * Small refactor * Small fix * Small fix * Small fix to dolly v1 * Small fix
This commit is contained in:
		
							parent
							
								
									c87853233b
								
							
						
					
					
						commit
						ca6e38607c
					
				
					 7 changed files with 178 additions and 47 deletions
				
			
		| 
						 | 
					@ -6,12 +6,9 @@ To run the examples, we recommend using Intel® Xeon® processors (server), or >
 | 
				
			||||||
 | 
					
 | 
				
			||||||
For OS, BigDL-LLM supports Ubuntu 20.04 or later, CentOS 7 or later, and Windows 10/11.
 | 
					For OS, BigDL-LLM supports Ubuntu 20.04 or later, CentOS 7 or later, and Windows 10/11.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Best Known Configuration
 | 
					## Best Known Configuration on Linux
 | 
				
			||||||
For better performance, it is recommended to set environment variables with the help of BigDL-Nano:
 | 
					For better performance, it is recommended to set environment variables on Linux with the help of BigDL-Nano:
 | 
				
			||||||
```bash
 | 
					```bash
 | 
				
			||||||
pip install bigdl-nano
 | 
					pip install bigdl-nano
 | 
				
			||||||
 | 
					source bigdl-nano-init
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
following with
 | 
					 | 
				
			||||||
| Linux | Windows (powershell)|
 | 
					 | 
				
			||||||
|:------|:-------|
 | 
					 | 
				
			||||||
|`source bigdl-nano-init`|`bigdl-nano-init`|
 | 
					 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,72 @@
 | 
				
			||||||
 | 
					# ChatGLM
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on ChatGLM models. For illustration purposes, we utilize the [THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b) as a reference ChatGLM model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## 0. Requirements
 | 
				
			||||||
 | 
					To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Example: Predict Tokens using `generate()` API
 | 
				
			||||||
 | 
					In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
 | 
				
			||||||
 | 
					### 1. Install
 | 
				
			||||||
 | 
					We suggest using conda to manage environment:
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					conda create -n llm python=3.9
 | 
				
			||||||
 | 
					conda activate llm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					pip install bigdl-llm[all] # install bigdl-llm with 'all' option
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 2. Run
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Arguments info:
 | 
				
			||||||
 | 
					- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the ChatGLM model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm-6b'`.
 | 
				
			||||||
 | 
					- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
 | 
				
			||||||
 | 
					- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> Please select the appropriate size of the ChatGLM model based on the capabilities of your machine.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.1 Client
 | 
				
			||||||
 | 
					On client Windows machine, it is recommended to run directly with full utilization of all cores:
 | 
				
			||||||
 | 
					```powershell
 | 
				
			||||||
 | 
					python ./generate.py 
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.2 Server
 | 
				
			||||||
 | 
					For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration) for more information), and run the example with all the physical cores of a single socket.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					E.g. on Linux,
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					# set BigDL-Nano env variables
 | 
				
			||||||
 | 
					source bigdl-nano-init
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# e.g. for a server with 48 cores per socket
 | 
				
			||||||
 | 
					export OMP_NUM_THREADS=48
 | 
				
			||||||
 | 
					numactl -C 0-47 -m 0 python ./generate.py
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.3 Sample Output
 | 
				
			||||||
 | 
					#### [THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b)
 | 
				
			||||||
 | 
					```log
 | 
				
			||||||
 | 
					Inference time: xxxx s
 | 
				
			||||||
 | 
					-------------------- Prompt --------------------
 | 
				
			||||||
 | 
					问:AI是什么?
 | 
				
			||||||
 | 
					答:
 | 
				
			||||||
 | 
					-------------------- Output --------------------
 | 
				
			||||||
 | 
					问:AI是什么?
 | 
				
			||||||
 | 
					答: AI是人工智能(Artificial Intelligence)的缩写,指的是一种能够模拟人类智能的技术或系统。AI系统可以通过学习、推理、解决问题等方式,实现类似于
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```log
 | 
				
			||||||
 | 
					Inference time: xxxx s
 | 
				
			||||||
 | 
					-------------------- Prompt --------------------
 | 
				
			||||||
 | 
					问:What is AI?
 | 
				
			||||||
 | 
					答:
 | 
				
			||||||
 | 
					-------------------- Output --------------------
 | 
				
			||||||
 | 
					问:What is AI?
 | 
				
			||||||
 | 
					答: AI stands for "Artificial Intelligence." AI refers to the development of computer systems that can perform tasks that typically require human intelligence, such as recognizing speech, understanding natural
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,69 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from bigdl.llm.transformers import AutoModel
 | 
				
			||||||
 | 
					from transformers import AutoTokenizer
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# you could tune the prompt based on your own model,
 | 
				
			||||||
 | 
					# here the prompt tuning refers to https://huggingface.co/THUDM/chatglm-6b/blob/294cb13118a1e08ad8449ca542624a5c6aecc401/modeling_chatglm.py#L1281
 | 
				
			||||||
 | 
					CHATGLM_V1_PROMPT_FORMAT = "问:{prompt}\n答:"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for ChatGLM model')
 | 
				
			||||||
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/chatglm-6b",
 | 
				
			||||||
 | 
					                        help='The huggingface repo id for the ChatGLM model to be downloaded'
 | 
				
			||||||
 | 
					                             ', or the path to the huggingface checkpoint folder')
 | 
				
			||||||
 | 
					    parser.add_argument('--prompt', type=str, default="AI是什么?",
 | 
				
			||||||
 | 
					                        help='Prompt to infer')
 | 
				
			||||||
 | 
					    parser.add_argument('--n-predict', type=int, default=32,
 | 
				
			||||||
 | 
					                        help='Max tokens to predict')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    args = parser.parse_args()
 | 
				
			||||||
 | 
					    model_path = args.repo_id_or_model_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Load model in 4 bit,
 | 
				
			||||||
 | 
					    # which convert the relevant layers in the model into INT4 format
 | 
				
			||||||
 | 
					    model = AutoModel.from_pretrained(model_path,
 | 
				
			||||||
 | 
					                                      load_in_4bit=True,
 | 
				
			||||||
 | 
					                                      trust_remote_code=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Load tokenizer
 | 
				
			||||||
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
				
			||||||
 | 
					                                              trust_remote_code=True)
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    # Generate predicted tokens
 | 
				
			||||||
 | 
					    with torch.inference_mode():
 | 
				
			||||||
 | 
					        prompt = CHATGLM_V1_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
				
			||||||
 | 
					        input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
				
			||||||
 | 
					        st = time.time()
 | 
				
			||||||
 | 
					        # if your selected model is capable of utilizing previous key/value attentions
 | 
				
			||||||
 | 
					        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
				
			||||||
 | 
					        # it is important to set `use_cache=True` explicitly in the `generate` function
 | 
				
			||||||
 | 
					        # to obtain optimal performance with BigDL-LLM INT4 optimizations
 | 
				
			||||||
 | 
					        output = model.generate(input_ids,
 | 
				
			||||||
 | 
					                                max_new_tokens=args.n_predict)
 | 
				
			||||||
 | 
					        end = time.time()
 | 
				
			||||||
 | 
					        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
				
			||||||
 | 
					        print(f'Inference time: {end-st} s')
 | 
				
			||||||
 | 
					        print('-'*20, 'Prompt', '-'*20)
 | 
				
			||||||
 | 
					        print(prompt)
 | 
				
			||||||
 | 
					        print('-'*20, 'Output', '-'*20)
 | 
				
			||||||
 | 
					        print(output_str)
 | 
				
			||||||
| 
						 | 
					@ -15,10 +15,7 @@ conda activate llm
 | 
				
			||||||
pip install bigdl-llm[all] # install bigdl-llm with 'all' option
 | 
					pip install bigdl-llm[all] # install bigdl-llm with 'all' option
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 2. Config
 | 
					### 2. Run
 | 
				
			||||||
It is recommended to set several environment variables for better performance. Please refer to [here](../README.md#best-known-configuration) for more information.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
### 3. Run
 | 
					 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
 | 
					python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
| 
						 | 
					@ -32,27 +29,26 @@ Arguments info:
 | 
				
			||||||
>
 | 
					>
 | 
				
			||||||
> Please select the appropriate size of the Dolly v1 model based on the capabilities of your machine.
 | 
					> Please select the appropriate size of the Dolly v1 model based on the capabilities of your machine.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### 3.1 Client
 | 
					#### 2.1 Client
 | 
				
			||||||
For better utilization of multiple cores on the client machine, it is recommended to use all the performance-cores along with their hyperthreads.
 | 
					On client Windows machine, it is recommended to run directly with full utilization of all cores:
 | 
				
			||||||
 | 
					 | 
				
			||||||
E.g. on Windows,
 | 
					 | 
				
			||||||
```powershell
 | 
					```powershell
 | 
				
			||||||
# for a client machine with 8 Performance-cores
 | 
					python ./generate.py 
 | 
				
			||||||
$env:OMP_NUM_THREADS=16
 | 
					 | 
				
			||||||
python ./generate.py
 | 
					 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### 3.2 Server
 | 
					#### 2.2 Server
 | 
				
			||||||
On server, it is recommended to run the example with all the physical cores of a single socket.
 | 
					For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration) for more information), and run the example with all the physical cores of a single socket.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
E.g. on Linux,
 | 
					E.g. on Linux,
 | 
				
			||||||
```bash
 | 
					```bash
 | 
				
			||||||
# for a server with 48 cores per socket
 | 
					# set BigDL-Nano env variables
 | 
				
			||||||
 | 
					source bigdl-nano-init
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# e.g. for a server with 48 cores per socket
 | 
				
			||||||
export OMP_NUM_THREADS=48
 | 
					export OMP_NUM_THREADS=48
 | 
				
			||||||
numactl -C 0-47 -m 0 python -u ./generate.py
 | 
					numactl -C 0-47 -m 0 python ./generate.py
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### 3.3 Sample Output
 | 
					#### 2.3 Sample Output
 | 
				
			||||||
#### [databricks/dolly-v1-6b](https://huggingface.co/databricks/dolly-v1-6b)
 | 
					#### [databricks/dolly-v1-6b](https://huggingface.co/databricks/dolly-v1-6b)
 | 
				
			||||||
```log
 | 
					```log
 | 
				
			||||||
Inference time: xxxx s
 | 
					Inference time: xxxx s
 | 
				
			||||||
| 
						 | 
					@ -23,7 +23,7 @@ from bigdl.llm.transformers import AutoModelForCausalLM
 | 
				
			||||||
from transformers import AutoTokenizer
 | 
					from transformers import AutoTokenizer
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# you could tune the prompt based on your own model,
 | 
					# you could tune the prompt based on your own model,
 | 
				
			||||||
# here the prompt format refers to https://huggingface.co/databricks/dolly-v1-6b#generate-text
 | 
					# here the prompt tuning refers to https://huggingface.co/databricks/dolly-v1-6b#generate-text
 | 
				
			||||||
DOLLY_V1_PROMPT_FORMAT = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
 | 
					DOLLY_V1_PROMPT_FORMAT = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### Instruction:
 | 
					### Instruction:
 | 
				
			||||||
| 
						 | 
					@ -33,7 +33,7 @@ DOLLY_V1_PROMPT_FORMAT = """Below is an instruction that describes a task. Write
 | 
				
			||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__ == '__main__':
 | 
					if __name__ == '__main__':
 | 
				
			||||||
    parser = argparse.ArgumentParser(description='Transformer INT4 example for Dolly v1 model')
 | 
					    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Dolly v1 model')
 | 
				
			||||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="databricks/dolly-v1-6b",
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str, default="databricks/dolly-v1-6b",
 | 
				
			||||||
                        help='The huggingface repo id for the Dolly v1 model to be downloaded'
 | 
					                        help='The huggingface repo id for the Dolly v1 model to be downloaded'
 | 
				
			||||||
                             ', or the path to the huggingface checkpoint folder')
 | 
					                             ', or the path to the huggingface checkpoint folder')
 | 
				
			||||||
| 
						 | 
					@ -59,11 +59,12 @@ if __name__ == '__main__':
 | 
				
			||||||
        input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
					        input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
				
			||||||
        end_key_token_id=tokenizer.encode("### End")[0]
 | 
					        end_key_token_id=tokenizer.encode("### End")[0]
 | 
				
			||||||
        st = time.time()
 | 
					        st = time.time()
 | 
				
			||||||
        # if your selected model is capable of utilizing previous key/value attentions
 | 
					        # enabling `use_cache=True` allows the model to utilize the previous
 | 
				
			||||||
        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
					        # key/values attentions to speed up decoding;
 | 
				
			||||||
        # it is important to set `use_cache=True` explicitly in the `generate` function
 | 
					        # to obtain optimal performance with BigDL-LLM INT4 optimizations,
 | 
				
			||||||
        # to obtain optimal performance with BigDL-LLM INT4 optimizations
 | 
					        # it is important to set use_cache=True for Dolly v1 models
 | 
				
			||||||
        output = model.generate(input_ids,
 | 
					        output = model.generate(input_ids,
 | 
				
			||||||
 | 
					                                use_cache=True,
 | 
				
			||||||
                                max_new_tokens=args.n_predict,
 | 
					                                max_new_tokens=args.n_predict,
 | 
				
			||||||
                                pad_token_id=tokenizer.pad_token_id,
 | 
					                                pad_token_id=tokenizer.pad_token_id,
 | 
				
			||||||
                                eos_token_id=end_key_token_id)
 | 
					                                eos_token_id=end_key_token_id)
 | 
				
			||||||
| 
						 | 
					@ -16,10 +16,7 @@ pip install bigdl-llm[all] # install bigdl-llm with 'all' option
 | 
				
			||||||
pip install einops  # additional package required for mpt-7b-chat to conduct generation
 | 
					pip install einops  # additional package required for mpt-7b-chat to conduct generation
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 2. Config
 | 
					### 2. Run
 | 
				
			||||||
It is recommended to set several environment variables for better performance. Please refer to [here](../README.md#best-known-configuration) for more information.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
### 3. Run
 | 
					 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
 | 
					python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
| 
						 | 
					@ -33,27 +30,26 @@ Arguments info:
 | 
				
			||||||
>
 | 
					>
 | 
				
			||||||
> Please select the appropriate size of the MPT model based on the capabilities of your machine.
 | 
					> Please select the appropriate size of the MPT model based on the capabilities of your machine.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### 3.1 Client
 | 
					#### 2.1 Client
 | 
				
			||||||
For better utilization of multiple cores on the client machine, it is recommended to use all the performance-cores along with their hyperthreads.
 | 
					On client Windows machine, it is recommended to run directly with full utilization of all cores:
 | 
				
			||||||
 | 
					 | 
				
			||||||
E.g. on Windows,
 | 
					 | 
				
			||||||
```powershell
 | 
					```powershell
 | 
				
			||||||
# for a client machine with 8 Performance-cores
 | 
					python ./generate.py 
 | 
				
			||||||
$env:OMP_NUM_THREADS=16
 | 
					 | 
				
			||||||
python ./generate.py
 | 
					 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### 3.2 Server
 | 
					#### 2.2 Server
 | 
				
			||||||
On server, it is recommended to run the example with all the physical cores of a single socket.
 | 
					For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration) for more information), and run the example with all the physical cores of a single socket.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
E.g. on Linux,
 | 
					E.g. on Linux,
 | 
				
			||||||
```bash
 | 
					```bash
 | 
				
			||||||
# for a server with 48 cores per socket
 | 
					# set BigDL-Nano env variables
 | 
				
			||||||
 | 
					source bigdl-nano-init
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# e.g. for a server with 48 cores per socket
 | 
				
			||||||
export OMP_NUM_THREADS=48
 | 
					export OMP_NUM_THREADS=48
 | 
				
			||||||
numactl -C 0-47 -m 0 python -u ./generate.py
 | 
					numactl -C 0-47 -m 0 python ./generate.py
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### 3.3 Sample Output
 | 
					#### 2.3 Sample Output
 | 
				
			||||||
#### [mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat)
 | 
					#### [mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat)
 | 
				
			||||||
```log
 | 
					```log
 | 
				
			||||||
Inference time: xxxx s
 | 
					Inference time: xxxx s
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -25,7 +25,7 @@ from transformers import AutoTokenizer
 | 
				
			||||||
MPT_PROMPT_FORMAT = "<human>{prompt} <bot>"
 | 
					MPT_PROMPT_FORMAT = "<human>{prompt} <bot>"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__ == '__main__':
 | 
					if __name__ == '__main__':
 | 
				
			||||||
    parser = argparse.ArgumentParser(description='Transformer INT4 example for MPT model')
 | 
					    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for MPT model')
 | 
				
			||||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="mosaicml/mpt-7b-chat",
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str, default="mosaicml/mpt-7b-chat",
 | 
				
			||||||
                        help='The huggingface repo id for the MPT to be downloaded'
 | 
					                        help='The huggingface repo id for the MPT to be downloaded'
 | 
				
			||||||
                             ', or the path to the huggingface checkpoint folder')
 | 
					                             ', or the path to the huggingface checkpoint folder')
 | 
				
			||||||
| 
						 | 
					@ -40,8 +40,8 @@ if __name__ == '__main__':
 | 
				
			||||||
    # Load model in 4 bit,
 | 
					    # Load model in 4 bit,
 | 
				
			||||||
    # which convert the relevant layers in the model into INT4 format
 | 
					    # which convert the relevant layers in the model into INT4 format
 | 
				
			||||||
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
					    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
				
			||||||
                                                 trust_remote_code=True,
 | 
					                                                 load_in_4bit=True,
 | 
				
			||||||
                                                 load_in_4bit=True)
 | 
					                                                 trust_remote_code=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Load tokenizer
 | 
					    # Load tokenizer
 | 
				
			||||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue