[LLM] Add more transformers examples (ChatGLM) (#8521)
* Add example for chatglm v1 and other small fixes * Small fix * Small further fix * Small fix * Update based on comments & updates for client windows recommended settingts * Small fix * Small refactor * Small fix * Small fix * Small fix to dolly v1 * Small fix
This commit is contained in:
parent
c87853233b
commit
ca6e38607c
7 changed files with 178 additions and 47 deletions
|
|
@ -6,12 +6,9 @@ To run the examples, we recommend using Intel® Xeon® processors (server), or >
|
||||||
|
|
||||||
For OS, BigDL-LLM supports Ubuntu 20.04 or later, CentOS 7 or later, and Windows 10/11.
|
For OS, BigDL-LLM supports Ubuntu 20.04 or later, CentOS 7 or later, and Windows 10/11.
|
||||||
|
|
||||||
## Best Known Configuration
|
## Best Known Configuration on Linux
|
||||||
For better performance, it is recommended to set environment variables with the help of BigDL-Nano:
|
For better performance, it is recommended to set environment variables on Linux with the help of BigDL-Nano:
|
||||||
```bash
|
```bash
|
||||||
pip install bigdl-nano
|
pip install bigdl-nano
|
||||||
|
source bigdl-nano-init
|
||||||
```
|
```
|
||||||
following with
|
|
||||||
| Linux | Windows (powershell)|
|
|
||||||
|:------|:-------|
|
|
||||||
|`source bigdl-nano-init`|`bigdl-nano-init`|
|
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,72 @@
|
||||||
|
# ChatGLM
|
||||||
|
|
||||||
|
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on ChatGLM models. For illustration purposes, we utilize the [THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b) as a reference ChatGLM model.
|
||||||
|
|
||||||
|
## 0. Requirements
|
||||||
|
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||||
|
|
||||||
|
## Example: Predict Tokens using `generate()` API
|
||||||
|
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
|
||||||
|
### 1. Install
|
||||||
|
We suggest using conda to manage environment:
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.9
|
||||||
|
conda activate llm
|
||||||
|
|
||||||
|
pip install bigdl-llm[all] # install bigdl-llm with 'all' option
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Run
|
||||||
|
```
|
||||||
|
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||||
|
```
|
||||||
|
|
||||||
|
Arguments info:
|
||||||
|
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the ChatGLM model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm-6b'`.
|
||||||
|
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
|
||||||
|
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||||
|
|
||||||
|
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
|
||||||
|
>
|
||||||
|
> Please select the appropriate size of the ChatGLM model based on the capabilities of your machine.
|
||||||
|
|
||||||
|
#### 2.1 Client
|
||||||
|
On client Windows machine, it is recommended to run directly with full utilization of all cores:
|
||||||
|
```powershell
|
||||||
|
python ./generate.py
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 2.2 Server
|
||||||
|
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration) for more information), and run the example with all the physical cores of a single socket.
|
||||||
|
|
||||||
|
E.g. on Linux,
|
||||||
|
```bash
|
||||||
|
# set BigDL-Nano env variables
|
||||||
|
source bigdl-nano-init
|
||||||
|
|
||||||
|
# e.g. for a server with 48 cores per socket
|
||||||
|
export OMP_NUM_THREADS=48
|
||||||
|
numactl -C 0-47 -m 0 python ./generate.py
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 2.3 Sample Output
|
||||||
|
#### [THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b)
|
||||||
|
```log
|
||||||
|
Inference time: xxxx s
|
||||||
|
-------------------- Prompt --------------------
|
||||||
|
问:AI是什么?
|
||||||
|
答:
|
||||||
|
-------------------- Output --------------------
|
||||||
|
问:AI是什么?
|
||||||
|
答: AI是人工智能(Artificial Intelligence)的缩写,指的是一种能够模拟人类智能的技术或系统。AI系统可以通过学习、推理、解决问题等方式,实现类似于
|
||||||
|
```
|
||||||
|
|
||||||
|
```log
|
||||||
|
Inference time: xxxx s
|
||||||
|
-------------------- Prompt --------------------
|
||||||
|
问:What is AI?
|
||||||
|
答:
|
||||||
|
-------------------- Output --------------------
|
||||||
|
问:What is AI?
|
||||||
|
答: AI stands for "Artificial Intelligence." AI refers to the development of computer systems that can perform tasks that typically require human intelligence, such as recognizing speech, understanding natural
|
||||||
|
```
|
||||||
|
|
@ -0,0 +1,69 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from bigdl.llm.transformers import AutoModel
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
|
# you could tune the prompt based on your own model,
|
||||||
|
# here the prompt tuning refers to https://huggingface.co/THUDM/chatglm-6b/blob/294cb13118a1e08ad8449ca542624a5c6aecc401/modeling_chatglm.py#L1281
|
||||||
|
CHATGLM_V1_PROMPT_FORMAT = "问:{prompt}\n答:"
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for ChatGLM model')
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/chatglm-6b",
|
||||||
|
help='The huggingface repo id for the ChatGLM model to be downloaded'
|
||||||
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
parser.add_argument('--prompt', type=str, default="AI是什么?",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument('--n-predict', type=int, default=32,
|
||||||
|
help='Max tokens to predict')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
|
||||||
|
# Load model in 4 bit,
|
||||||
|
# which convert the relevant layers in the model into INT4 format
|
||||||
|
model = AutoModel.from_pretrained(model_path,
|
||||||
|
load_in_4bit=True,
|
||||||
|
trust_remote_code=True)
|
||||||
|
|
||||||
|
# Load tokenizer
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||||
|
trust_remote_code=True)
|
||||||
|
|
||||||
|
# Generate predicted tokens
|
||||||
|
with torch.inference_mode():
|
||||||
|
prompt = CHATGLM_V1_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||||
|
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||||
|
st = time.time()
|
||||||
|
# if your selected model is capable of utilizing previous key/value attentions
|
||||||
|
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
||||||
|
# it is important to set `use_cache=True` explicitly in the `generate` function
|
||||||
|
# to obtain optimal performance with BigDL-LLM INT4 optimizations
|
||||||
|
output = model.generate(input_ids,
|
||||||
|
max_new_tokens=args.n_predict)
|
||||||
|
end = time.time()
|
||||||
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||||
|
print(f'Inference time: {end-st} s')
|
||||||
|
print('-'*20, 'Prompt', '-'*20)
|
||||||
|
print(prompt)
|
||||||
|
print('-'*20, 'Output', '-'*20)
|
||||||
|
print(output_str)
|
||||||
|
|
@ -15,10 +15,7 @@ conda activate llm
|
||||||
pip install bigdl-llm[all] # install bigdl-llm with 'all' option
|
pip install bigdl-llm[all] # install bigdl-llm with 'all' option
|
||||||
```
|
```
|
||||||
|
|
||||||
### 2. Config
|
### 2. Run
|
||||||
It is recommended to set several environment variables for better performance. Please refer to [here](../README.md#best-known-configuration) for more information.
|
|
||||||
|
|
||||||
### 3. Run
|
|
||||||
```
|
```
|
||||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||||
```
|
```
|
||||||
|
|
@ -32,27 +29,26 @@ Arguments info:
|
||||||
>
|
>
|
||||||
> Please select the appropriate size of the Dolly v1 model based on the capabilities of your machine.
|
> Please select the appropriate size of the Dolly v1 model based on the capabilities of your machine.
|
||||||
|
|
||||||
#### 3.1 Client
|
#### 2.1 Client
|
||||||
For better utilization of multiple cores on the client machine, it is recommended to use all the performance-cores along with their hyperthreads.
|
On client Windows machine, it is recommended to run directly with full utilization of all cores:
|
||||||
|
|
||||||
E.g. on Windows,
|
|
||||||
```powershell
|
```powershell
|
||||||
# for a client machine with 8 Performance-cores
|
|
||||||
$env:OMP_NUM_THREADS=16
|
|
||||||
python ./generate.py
|
python ./generate.py
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 3.2 Server
|
#### 2.2 Server
|
||||||
On server, it is recommended to run the example with all the physical cores of a single socket.
|
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration) for more information), and run the example with all the physical cores of a single socket.
|
||||||
|
|
||||||
E.g. on Linux,
|
E.g. on Linux,
|
||||||
```bash
|
```bash
|
||||||
# for a server with 48 cores per socket
|
# set BigDL-Nano env variables
|
||||||
|
source bigdl-nano-init
|
||||||
|
|
||||||
|
# e.g. for a server with 48 cores per socket
|
||||||
export OMP_NUM_THREADS=48
|
export OMP_NUM_THREADS=48
|
||||||
numactl -C 0-47 -m 0 python -u ./generate.py
|
numactl -C 0-47 -m 0 python ./generate.py
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 3.3 Sample Output
|
#### 2.3 Sample Output
|
||||||
#### [databricks/dolly-v1-6b](https://huggingface.co/databricks/dolly-v1-6b)
|
#### [databricks/dolly-v1-6b](https://huggingface.co/databricks/dolly-v1-6b)
|
||||||
```log
|
```log
|
||||||
Inference time: xxxx s
|
Inference time: xxxx s
|
||||||
|
|
@ -23,7 +23,7 @@ from bigdl.llm.transformers import AutoModelForCausalLM
|
||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
# you could tune the prompt based on your own model,
|
# you could tune the prompt based on your own model,
|
||||||
# here the prompt format refers to https://huggingface.co/databricks/dolly-v1-6b#generate-text
|
# here the prompt tuning refers to https://huggingface.co/databricks/dolly-v1-6b#generate-text
|
||||||
DOLLY_V1_PROMPT_FORMAT = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
DOLLY_V1_PROMPT_FORMAT = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
||||||
|
|
||||||
### Instruction:
|
### Instruction:
|
||||||
|
|
@ -33,7 +33,7 @@ DOLLY_V1_PROMPT_FORMAT = """Below is an instruction that describes a task. Write
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
parser = argparse.ArgumentParser(description='Transformer INT4 example for Dolly v1 model')
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Dolly v1 model')
|
||||||
parser.add_argument('--repo-id-or-model-path', type=str, default="databricks/dolly-v1-6b",
|
parser.add_argument('--repo-id-or-model-path', type=str, default="databricks/dolly-v1-6b",
|
||||||
help='The huggingface repo id for the Dolly v1 model to be downloaded'
|
help='The huggingface repo id for the Dolly v1 model to be downloaded'
|
||||||
', or the path to the huggingface checkpoint folder')
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
|
@ -59,11 +59,12 @@ if __name__ == '__main__':
|
||||||
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||||
end_key_token_id=tokenizer.encode("### End")[0]
|
end_key_token_id=tokenizer.encode("### End")[0]
|
||||||
st = time.time()
|
st = time.time()
|
||||||
# if your selected model is capable of utilizing previous key/value attentions
|
# enabling `use_cache=True` allows the model to utilize the previous
|
||||||
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
# key/values attentions to speed up decoding;
|
||||||
# it is important to set `use_cache=True` explicitly in the `generate` function
|
# to obtain optimal performance with BigDL-LLM INT4 optimizations,
|
||||||
# to obtain optimal performance with BigDL-LLM INT4 optimizations
|
# it is important to set use_cache=True for Dolly v1 models
|
||||||
output = model.generate(input_ids,
|
output = model.generate(input_ids,
|
||||||
|
use_cache=True,
|
||||||
max_new_tokens=args.n_predict,
|
max_new_tokens=args.n_predict,
|
||||||
pad_token_id=tokenizer.pad_token_id,
|
pad_token_id=tokenizer.pad_token_id,
|
||||||
eos_token_id=end_key_token_id)
|
eos_token_id=end_key_token_id)
|
||||||
|
|
@ -16,10 +16,7 @@ pip install bigdl-llm[all] # install bigdl-llm with 'all' option
|
||||||
pip install einops # additional package required for mpt-7b-chat to conduct generation
|
pip install einops # additional package required for mpt-7b-chat to conduct generation
|
||||||
```
|
```
|
||||||
|
|
||||||
### 2. Config
|
### 2. Run
|
||||||
It is recommended to set several environment variables for better performance. Please refer to [here](../README.md#best-known-configuration) for more information.
|
|
||||||
|
|
||||||
### 3. Run
|
|
||||||
```
|
```
|
||||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||||
```
|
```
|
||||||
|
|
@ -33,27 +30,26 @@ Arguments info:
|
||||||
>
|
>
|
||||||
> Please select the appropriate size of the MPT model based on the capabilities of your machine.
|
> Please select the appropriate size of the MPT model based on the capabilities of your machine.
|
||||||
|
|
||||||
#### 3.1 Client
|
#### 2.1 Client
|
||||||
For better utilization of multiple cores on the client machine, it is recommended to use all the performance-cores along with their hyperthreads.
|
On client Windows machine, it is recommended to run directly with full utilization of all cores:
|
||||||
|
|
||||||
E.g. on Windows,
|
|
||||||
```powershell
|
```powershell
|
||||||
# for a client machine with 8 Performance-cores
|
|
||||||
$env:OMP_NUM_THREADS=16
|
|
||||||
python ./generate.py
|
python ./generate.py
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 3.2 Server
|
#### 2.2 Server
|
||||||
On server, it is recommended to run the example with all the physical cores of a single socket.
|
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration) for more information), and run the example with all the physical cores of a single socket.
|
||||||
|
|
||||||
E.g. on Linux,
|
E.g. on Linux,
|
||||||
```bash
|
```bash
|
||||||
# for a server with 48 cores per socket
|
# set BigDL-Nano env variables
|
||||||
|
source bigdl-nano-init
|
||||||
|
|
||||||
|
# e.g. for a server with 48 cores per socket
|
||||||
export OMP_NUM_THREADS=48
|
export OMP_NUM_THREADS=48
|
||||||
numactl -C 0-47 -m 0 python -u ./generate.py
|
numactl -C 0-47 -m 0 python ./generate.py
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 3.3 Sample Output
|
#### 2.3 Sample Output
|
||||||
#### [mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat)
|
#### [mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat)
|
||||||
```log
|
```log
|
||||||
Inference time: xxxx s
|
Inference time: xxxx s
|
||||||
|
|
|
||||||
|
|
@ -25,7 +25,7 @@ from transformers import AutoTokenizer
|
||||||
MPT_PROMPT_FORMAT = "<human>{prompt} <bot>"
|
MPT_PROMPT_FORMAT = "<human>{prompt} <bot>"
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
parser = argparse.ArgumentParser(description='Transformer INT4 example for MPT model')
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for MPT model')
|
||||||
parser.add_argument('--repo-id-or-model-path', type=str, default="mosaicml/mpt-7b-chat",
|
parser.add_argument('--repo-id-or-model-path', type=str, default="mosaicml/mpt-7b-chat",
|
||||||
help='The huggingface repo id for the MPT to be downloaded'
|
help='The huggingface repo id for the MPT to be downloaded'
|
||||||
', or the path to the huggingface checkpoint folder')
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
|
@ -40,8 +40,8 @@ if __name__ == '__main__':
|
||||||
# Load model in 4 bit,
|
# Load model in 4 bit,
|
||||||
# which convert the relevant layers in the model into INT4 format
|
# which convert the relevant layers in the model into INT4 format
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||||
trust_remote_code=True,
|
load_in_4bit=True,
|
||||||
load_in_4bit=True)
|
trust_remote_code=True)
|
||||||
|
|
||||||
# Load tokenizer
|
# Load tokenizer
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue