Doc: update sidebar and quickstarts order. (#6743)
* doc: update sidebar and quickstarts order. * fix: adjust quickstart order. * fix: fix typo. * fix: fix typo.
This commit is contained in:
		
							parent
							
								
									cd8d21dded
								
							
						
					
					
						commit
						ca3b088522
					
				
					 3 changed files with 40 additions and 35 deletions
				
			
		| 
						 | 
				
			
			@ -10,13 +10,19 @@
 | 
			
		|||
                </label>
 | 
			
		||||
                <ul class="bigdl-quicklinks-section-nav">
 | 
			
		||||
                    <li>
 | 
			
		||||
                        <a href="doc/Orca/Howto/spark-dataframe.html">Use Spark DataFrames for Deep Learning</a>
 | 
			
		||||
                        <a href="doc/Orca/QuickStart/orca-tf2keras-quickstart.html">TensorFlow 2 Quickstart</a>
 | 
			
		||||
                    </li>
 | 
			
		||||
		    <li>
 | 
			
		||||
                        <a href="doc/Orca/QuickStart/orca-pytorch-distributed-quickstart.html">Distributed PyTorch using Orca</a>
 | 
			
		||||
                        <a href="doc/Orca/QuickStart/orca-pytorch-quickstart.html">PyTorch Quickstart</a>
 | 
			
		||||
                    </li>
 | 
			
		||||
		    <li>
 | 
			
		||||
                        <a href="doc/Orca/Howto/orca-autoxgboost-quickstart.html">Use AutoXGBoost to auto-tune XGBoost parameters</a>
 | 
			
		||||
                        <a href="doc/Orca/QuickStart/ray-quickstart.html">RayOnSpark Quickstart</a>
 | 
			
		||||
                    </li>
 | 
			
		||||
		    <li>
 | 
			
		||||
                        <a href="doc/Orca/QuickStart/orca-tf-quickstart.html">TensorFlow 1.15 Quickstart</a>
 | 
			
		||||
                    </li>
 | 
			
		||||
		    <li>
 | 
			
		||||
                        <a href="doc/Orca/QuickStart/orca-keras-quickstart.html">Keras 2.3 Quickstart</a>
 | 
			
		||||
                    </li>
 | 
			
		||||
                </ul>
 | 
			
		||||
            </li>
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -42,11 +42,11 @@ subtrees:
 | 
			
		|||
            title: "Quickstarts"
 | 
			
		||||
            subtrees:
 | 
			
		||||
              - entries:
 | 
			
		||||
                - file: doc/Orca/QuickStart/orca-tf-quickstart
 | 
			
		||||
                - file: doc/Orca/QuickStart/orca-tf2keras-quickstart
 | 
			
		||||
                - file: doc/Orca/QuickStart/orca-keras-quickstart
 | 
			
		||||
                - file: doc/Orca/QuickStart/orca-pytorch-quickstart
 | 
			
		||||
                - file: doc/Orca/QuickStart/ray-quickstart
 | 
			
		||||
                - file: doc/Orca/QuickStart/orca-tf-quickstart
 | 
			
		||||
                - file: doc/Orca/QuickStart/orca-keras-quickstart
 | 
			
		||||
          - file: doc/Orca/Howto/index
 | 
			
		||||
            title: "How-to Guides"
 | 
			
		||||
            subtrees:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,7 +1,31 @@
 | 
			
		|||
# Orca Quickstarts
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
- [**Orca TensorFlow 1.15 Quickstart**](./orca-tf-quickstart.html)
 | 
			
		||||
- [**TensorFlow 2 Quickstart**](./orca-tf2keras-quickstart.html)
 | 
			
		||||
 | 
			
		||||
    > [Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/tf2_keras_lenet_mnist.ipynb)  [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/tf2_keras_lenet_mnist.ipynb)
 | 
			
		||||
 | 
			
		||||
    In this guide we will describe how to scale out TensorFlow 2 programs using Orca in 5 simple steps.
 | 
			
		||||
 | 
			
		||||
---------------------------
 | 
			
		||||
 | 
			
		||||
- [**PyTorch Quickstart**](./orca-pytorch-quickstart.html)
 | 
			
		||||
 | 
			
		||||
    > [Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/pytorch_lenet_mnist.ipynb)  [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/pytorch_lenet_mnist.ipynb)
 | 
			
		||||
 | 
			
		||||
    In this guide we will describe how to scale out PyTorch programs using Orca in 5 simple steps.
 | 
			
		||||
 | 
			
		||||
---------------------------
 | 
			
		||||
 | 
			
		||||
- [**RayOnSpark Quickstart**](./ray-quickstart.html)
 | 
			
		||||
 | 
			
		||||
    > [Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/ray_parameter_server.ipynb)  [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/ray_parameter_server.ipynb)
 | 
			
		||||
 | 
			
		||||
    In this guide we will describe how to use RayOnSpark to directly run Ray programs on Big Data clusters in 2 simple steps.
 | 
			
		||||
 | 
			
		||||
---------------------------
 | 
			
		||||
 | 
			
		||||
- [**TensorFlow 1.15 Quickstart**](./orca-tf-quickstart.html)
 | 
			
		||||
 | 
			
		||||
    > [Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/tf_lenet_mnist.ipynb)  [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/tf_lenet_mnist.ipynb)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -9,15 +33,7 @@
 | 
			
		|||
 | 
			
		||||
---------------------------
 | 
			
		||||
 | 
			
		||||
- [**Orca TensorFlow 2 Quickstart**](./orca-tf2keras-quickstart.html)
 | 
			
		||||
 | 
			
		||||
    > [Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/tf2_keras_lenet_mnist.ipynb)  [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/tf2_keras_lenet_mnist.ipynb)
 | 
			
		||||
 | 
			
		||||
    In this guide we will describe how to to scale out TensorFlow 2 programs using Orca in 4 simple steps.
 | 
			
		||||
 | 
			
		||||
---------------------------
 | 
			
		||||
 | 
			
		||||
- [**Orca Keras 2.3 Quickstart**](./orca-keras-quickstart.html)
 | 
			
		||||
- [**Keras 2.3 Quickstart**](./orca-keras-quickstart.html)
 | 
			
		||||
 | 
			
		||||
    > [Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/keras_lenet_mnist.ipynb)  [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/keras_lenet_mnist.ipynb)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -25,20 +41,3 @@
 | 
			
		|||
 | 
			
		||||
---------------------------
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
- [**Orca PyTorch Quickstart**](./orca-pytorch-quickstart.html)
 | 
			
		||||
 | 
			
		||||
    > [Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/pytorch_lenet_mnist.ipynb)  [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/pytorch_lenet_mnist.ipynb)
 | 
			
		||||
 | 
			
		||||
    In this guide we will describe how to scale out PyTorch programs using Orca in 4 simple steps.
 | 
			
		||||
 | 
			
		||||
---------------------------
 | 
			
		||||
 | 
			
		||||
- [**Orca RayOnSpark Quickstart**](./ray-quickstart.html)
 | 
			
		||||
 | 
			
		||||
    > [Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/ray_parameter_server.ipynb)  [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/ray_parameter_server.ipynb)
 | 
			
		||||
 | 
			
		||||
    In this guide, we will describe how to use RayOnSpark to directly run Ray programs on Big Data clusters in 2 simple steps.
 | 
			
		||||
 | 
			
		||||
---------------------------
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue