LLM: add save/load example for ModelScope (#10397)
* LLM: add sl example for modelscope * fix according to comments * move file
This commit is contained in:
		
							parent
							
								
									24473e331a
								
							
						
					
					
						commit
						ca372f6dab
					
				
					 2 changed files with 205 additions and 0 deletions
				
			
		
							
								
								
									
										127
									
								
								python/llm/example/GPU/ModelScope-Models/Save-Load/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										127
									
								
								python/llm/example/GPU/ModelScope-Models/Save-Load/README.md
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,127 @@
 | 
				
			||||||
 | 
					# Save/Load Low-Bit Models with BigDL-LLM Optimizations
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					In this directory, you will find example on how you could save/load ModelScope models with BigDL-LLM INT4 optimizations on ModelScope models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [baichuan-inc/Baichuan2-7B-Chat](https://modelscope.cn/models/baichuan-inc/Baichuan2-7B-Chat/summary) as a reference ModelScope model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## 0. Requirements
 | 
				
			||||||
 | 
					To run this example with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../../README.md#system-support) for more information.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Example: Save/Load Model in Low-Bit Optimization
 | 
				
			||||||
 | 
					In the example [generate.py](./generate.py), we show a basic use case of saving/loading model in low-bit optimizations to predict the next N tokens using `generate()` API. Also, saving and loading operations are platform-independent, so you could run it on different platforms.
 | 
				
			||||||
 | 
					### 1. Install
 | 
				
			||||||
 | 
					#### 1.1 Installation on Linux
 | 
				
			||||||
 | 
					We suggest using conda to manage environment:
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					conda create -n llm python=3.9
 | 
				
			||||||
 | 
					conda activate llm
 | 
				
			||||||
 | 
					# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
				
			||||||
 | 
					pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
 | 
				
			||||||
 | 
					pip install modelscope==1.11.0
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 1.2 Installation on Windows
 | 
				
			||||||
 | 
					We suggest using conda to manage environment:
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					conda create -n llm python=3.9 libuv
 | 
				
			||||||
 | 
					conda activate llm
 | 
				
			||||||
 | 
					# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
				
			||||||
 | 
					pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
 | 
				
			||||||
 | 
					pip install modelscope==1.11.0
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 2. Configures OneAPI environment variables
 | 
				
			||||||
 | 
					#### 2.1 Configurations for Linux
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					source /opt/intel/oneapi/setvars.sh
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.2 Configurations for Windows
 | 
				
			||||||
 | 
					```cmd
 | 
				
			||||||
 | 
					call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 3. Run
 | 
				
			||||||
 | 
					#### 3.1 Configurations for Linux
 | 
				
			||||||
 | 
					<details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					export USE_XETLA=OFF
 | 
				
			||||||
 | 
					export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					</details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<summary>For Intel Data Center GPU Max Series</summary>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
 | 
				
			||||||
 | 
					export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
				
			||||||
 | 
					export ENABLE_SDP_FUSION=1
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
 | 
				
			||||||
 | 
					</details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 3.2 Configurations for Windows
 | 
				
			||||||
 | 
					<details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<summary>For Intel iGPU</summary>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```cmd
 | 
				
			||||||
 | 
					set SYCL_CACHE_PERSISTENT=1
 | 
				
			||||||
 | 
					set BIGDL_LLM_XMX_DISABLED=1
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					</details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<summary>For Intel Arc™ A300-Series or Pro A60</summary>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```cmd
 | 
				
			||||||
 | 
					set SYCL_CACHE_PERSISTENT=1
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					</details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<summary>For other Intel dGPU Series</summary>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					There is no need to set further environment variables.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					</details>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 4. Running examples
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					If you want to save the optimized low-bit model, run:
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					python ./generate.py --save-path path/to/save/model
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					If you want to load the optimized low-bit model, run:
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					python ./generate.py --load-path path/to/load/model
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					In the example, several arguments can be passed to satisfy your requirements:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the ModelScope repo id for the Baichuan model to be downloaded, or the path to the ModelScope checkpoint folder. It is default to be `'baichuan-inc/Baichuan2-7B-Chat'`.
 | 
				
			||||||
 | 
					- `--save-path`: argument defining the path to save the low-bit model. Then you can load the low-bit directly.
 | 
				
			||||||
 | 
					- `--load-path`: argument defining the path to load low-bit model.
 | 
				
			||||||
 | 
					- `--prompt PROMPT`: argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `'What is AI?'`.
 | 
				
			||||||
 | 
					- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### Sample Output
 | 
				
			||||||
 | 
					#### [baichuan-inc/Baichuan2-7B-Chat](https://modelscope.cn/models/baichuan-inc/Baichuan2-7B-Chat/summary)
 | 
				
			||||||
 | 
					```log
 | 
				
			||||||
 | 
					Inference time: xxxx s
 | 
				
			||||||
 | 
					-------------------- Output --------------------
 | 
				
			||||||
 | 
					<human>What is AI? <bot>Artificial Intelligence (AI) refers to the development of computer systems that can perform tasks that would typically require human intelligence. These tasks include learning, reasoning, problem
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,78 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					from bigdl.llm.transformers import AutoModelForCausalLM
 | 
				
			||||||
 | 
					from modelscope import AutoTokenizer
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# you could tune the prompt based on your own model,
 | 
				
			||||||
 | 
					BAICHUAN_PROMPT_FORMAT = "<human>{prompt} <bot>"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser(description='Example of saving and loading the optimized model')
 | 
				
			||||||
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str, default="baichuan-inc/Baichuan2-7B-Chat",
 | 
				
			||||||
 | 
					                        help='The ModelScope repo id for the Baichuan model to be downloaded to be downloaded'
 | 
				
			||||||
 | 
					                             ', or the path to the ModelScope checkpoint folder')
 | 
				
			||||||
 | 
					    parser.add_argument('--save-path', type=str, default=None,
 | 
				
			||||||
 | 
					                        help='The path to save the low-bit model.')
 | 
				
			||||||
 | 
					    parser.add_argument('--load-path', type=str, default=None,
 | 
				
			||||||
 | 
					                        help='The path to load the low-bit model.')
 | 
				
			||||||
 | 
					    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
				
			||||||
 | 
					                        help='Prompt to infer')
 | 
				
			||||||
 | 
					    parser.add_argument('--n-predict', type=int, default=32,
 | 
				
			||||||
 | 
					                        help='Max tokens to predict')
 | 
				
			||||||
 | 
					    args = parser.parse_args()
 | 
				
			||||||
 | 
					    model_path = args.repo_id_or_model_path
 | 
				
			||||||
 | 
					    load_path = args.load_path
 | 
				
			||||||
 | 
					    if load_path:
 | 
				
			||||||
 | 
					        model = AutoModelForCausalLM.load_low_bit(load_path, trust_remote_code=True)
 | 
				
			||||||
 | 
					        tokenizer = AutoTokenizer.from_pretrained(load_path, trust_remote_code=True)
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
				
			||||||
 | 
					                                                     load_in_4bit=True,
 | 
				
			||||||
 | 
					                                                     trust_remote_code=True,
 | 
				
			||||||
 | 
					                                                     model_hub='modelscope')
 | 
				
			||||||
 | 
					        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    save_path = args.save_path
 | 
				
			||||||
 | 
					    if save_path:
 | 
				
			||||||
 | 
					        model.save_low_bit(save_path)
 | 
				
			||||||
 | 
					        tokenizer.save_pretrained(save_path)
 | 
				
			||||||
 | 
					        print(f"Model and tokenizer are saved to {save_path}")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # please save/load model before you run it on GPU
 | 
				
			||||||
 | 
					    model = model.to('xpu')
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    # Generate predicted tokens
 | 
				
			||||||
 | 
					    with torch.inference_mode():
 | 
				
			||||||
 | 
					        prompt = BAICHUAN_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
				
			||||||
 | 
					        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
				
			||||||
 | 
					        # ipex model needs a warmup, then inference time can be accurate
 | 
				
			||||||
 | 
					        output = model.generate(input_ids,
 | 
				
			||||||
 | 
					                                max_new_tokens=args.n_predict)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        st = time.time()
 | 
				
			||||||
 | 
					        output = model.generate(input_ids,
 | 
				
			||||||
 | 
					                                max_new_tokens=args.n_predict)
 | 
				
			||||||
 | 
					        torch.xpu.synchronize()
 | 
				
			||||||
 | 
					        end = time.time()
 | 
				
			||||||
 | 
					        output = output.cpu()
 | 
				
			||||||
 | 
					        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
				
			||||||
 | 
					        print(f'Inference time: {end-st} s')
 | 
				
			||||||
 | 
					        print('-'*20, 'Output', '-'*20)
 | 
				
			||||||
 | 
					        print(output_str)
 | 
				
			||||||
		Loading…
	
		Reference in a new issue