optimize npu llama perf again (#11431)

This commit is contained in:
Yishuo Wang 2024-06-26 10:52:54 +08:00 committed by GitHub
parent 9f6e5b4fba
commit ca0e69c3a7
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 64 additions and 25 deletions

View file

@ -116,12 +116,9 @@ class _BaseAutoModelClass:
try: try:
# for intel_npu_acceleration_library >= 1.1.0 # for intel_npu_acceleration_library >= 1.1.0
from intel_npu_acceleration_library.quantization import quantize_model from intel_npu_acceleration_library.quantization import quantize_model
from intel_npu_acceleration_library.compiler import ( from intel_npu_acceleration_library.compiler import create_npu_kernels
apply_horizontal_fusion, create_npu_kernels
)
with torch.no_grad(): with torch.no_grad():
optimize_llm(model) optimize_llm(model)
apply_horizontal_fusion(model)
if not qtype.is_floating_point: if not qtype.is_floating_point:
model = quantize_model(model, qtype) model = quantize_model(model, qtype)
create_npu_kernels(model) create_npu_kernels(model)

View file

@ -0,0 +1,32 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from typing import List
def merge_linear(linears: List[torch.nn.Linear]) -> torch.nn.Linear:
new_weight = torch.cat(list(linear.weight.data for linear in linears), dim=0)
if linears[0].bias is not None:
new_linear = torch.nn.Linear(0, 0, bias=True)
new_bias = torch.cat(list(linear.bias.data for linear in linears), dim=0)
new_linear.bias = torch.nn.Parameter(new_bias, requires_grad=False)
else:
new_linear = torch.nn.Linear(0, 0, bias=False)
new_linear.weight = torch.nn.Parameter(new_weight, requires_grad=False)
new_linear.in_features = new_weight.size(1)
new_linear.out_features = new_weight.size(0)
return new_linear

View file

@ -29,6 +29,11 @@ def optimize_llm(model: torch.nn.Module):
if model.config.model_type == "llama": if model.config.model_type == "llama":
from ipex_llm.transformers.npu_models.llama import merge_qkv from ipex_llm.transformers.npu_models.llama import merge_qkv
model.apply(merge_qkv) model.apply(merge_qkv)
from ipex_llm.transformers.npu_models.llama import merge_mlp
model.apply(merge_mlp)
from ipex_llm.transformers.npu_models.llama import llama_attention_forward from ipex_llm.transformers.npu_models.llama import llama_attention_forward
from transformers.models.llama.modeling_llama import LlamaAttention from transformers.models.llama.modeling_llama import LlamaAttention
convert_forward(model, LlamaAttention, llama_attention_forward) convert_forward(model, LlamaAttention, llama_attention_forward)
from ipex_llm.transformers.npu_models.llama import llama_mlp_forward
from transformers.models.llama.modeling_llama import LlamaMLP
convert_forward(model, LlamaMLP, llama_mlp_forward)

View file

@ -36,35 +36,33 @@ from typing import Optional, Tuple
from transformers.cache_utils import Cache from transformers.cache_utils import Cache
import torch import torch
from transformers.models.llama.modeling_llama import LlamaAttention, repeat_kv, apply_rotary_pos_emb from transformers.models.llama.modeling_llama import repeat_kv, apply_rotary_pos_emb
from transformers.models.llama.modeling_llama import LlamaAttention, LlamaMLP
from ipex_llm.transformers.npu_models.common import merge_linear
def merge_qkv(module: torch.nn.Module): def merge_qkv(module: torch.nn.Module):
if isinstance(module, LlamaAttention): if isinstance(module, LlamaAttention):
new_weight = torch.cat([ qkv_proj = merge_linear([
module.q_proj.weight.data, module.q_proj,
module.k_proj.weight.data, module.k_proj,
module.v_proj.weight.data, module.v_proj,
], dim=0) ])
if module.q_proj.bias is not None:
qkv_proj = torch.nn.Linear(0, 0, bias=True)
new_bias = torch.cat([
module.q_proj.bias.data,
module.k_proj.bias.data,
module.v_proj.bias.data,
], dim=0)
qkv_proj.bias = torch.nn.Parameter(new_bias, requires_grad=False)
else:
qkv_proj = torch.nn.Linear(0, 0, bias=False)
qkv_proj.weight = torch.nn.Parameter(new_weight, requires_grad=False)
qkv_proj.in_features = new_weight.size(1)
qkv_proj.out_features = new_weight.size(0)
module.qkv_proj = qkv_proj module.qkv_proj = qkv_proj
del module.q_proj, module.k_proj, module.v_proj del module.q_proj, module.k_proj, module.v_proj
def merge_mlp(module: torch.nn.Module):
if isinstance(module, LlamaMLP):
gate_up_proj = merge_linear([
module.gate_proj,
module.up_proj,
])
module.gate_up_proj = gate_up_proj
del module.gate_proj, module.up_proj
def llama_attention_forward( def llama_attention_forward(
self, self,
hidden_states: torch.Tensor, hidden_states: torch.Tensor,
@ -121,3 +119,10 @@ def llama_attention_forward(
attn_weights = None attn_weights = None
return attn_output, attn_weights, past_key_value return attn_output, attn_weights, past_key_value
def llama_mlp_forward(self, x):
gate_up_proj = self.gate_up_proj(x)
gate_proj, up_proj = gate_up_proj.chunk(2, dim=-1)
down_proj = self.down_proj(self.act_fn(gate_proj) * up_proj)
return down_proj