optimize npu llama perf again (#11431)
This commit is contained in:
		
							parent
							
								
									9f6e5b4fba
								
							
						
					
					
						commit
						ca0e69c3a7
					
				
					 4 changed files with 64 additions and 25 deletions
				
			
		| 
						 | 
					@ -116,12 +116,9 @@ class _BaseAutoModelClass:
 | 
				
			||||||
        try:
 | 
					        try:
 | 
				
			||||||
            # for intel_npu_acceleration_library >= 1.1.0
 | 
					            # for intel_npu_acceleration_library >= 1.1.0
 | 
				
			||||||
            from intel_npu_acceleration_library.quantization import quantize_model
 | 
					            from intel_npu_acceleration_library.quantization import quantize_model
 | 
				
			||||||
            from intel_npu_acceleration_library.compiler import (
 | 
					            from intel_npu_acceleration_library.compiler import create_npu_kernels
 | 
				
			||||||
                apply_horizontal_fusion, create_npu_kernels
 | 
					 | 
				
			||||||
            )
 | 
					 | 
				
			||||||
            with torch.no_grad():
 | 
					            with torch.no_grad():
 | 
				
			||||||
                optimize_llm(model)
 | 
					                optimize_llm(model)
 | 
				
			||||||
                apply_horizontal_fusion(model)
 | 
					 | 
				
			||||||
                if not qtype.is_floating_point:
 | 
					                if not qtype.is_floating_point:
 | 
				
			||||||
                    model = quantize_model(model, qtype)
 | 
					                    model = quantize_model(model, qtype)
 | 
				
			||||||
                create_npu_kernels(model)
 | 
					                create_npu_kernels(model)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										32
									
								
								python/llm/src/ipex_llm/transformers/npu_models/common.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										32
									
								
								python/llm/src/ipex_llm/transformers/npu_models/common.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,32 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					from typing import List
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def merge_linear(linears: List[torch.nn.Linear]) -> torch.nn.Linear:
 | 
				
			||||||
 | 
					    new_weight = torch.cat(list(linear.weight.data for linear in linears), dim=0)
 | 
				
			||||||
 | 
					    if linears[0].bias is not None:
 | 
				
			||||||
 | 
					        new_linear = torch.nn.Linear(0, 0, bias=True)
 | 
				
			||||||
 | 
					        new_bias = torch.cat(list(linear.bias.data for linear in linears), dim=0)
 | 
				
			||||||
 | 
					        new_linear.bias = torch.nn.Parameter(new_bias, requires_grad=False)
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        new_linear = torch.nn.Linear(0, 0, bias=False)
 | 
				
			||||||
 | 
					    new_linear.weight = torch.nn.Parameter(new_weight, requires_grad=False)
 | 
				
			||||||
 | 
					    new_linear.in_features = new_weight.size(1)
 | 
				
			||||||
 | 
					    new_linear.out_features = new_weight.size(0)
 | 
				
			||||||
 | 
					    return new_linear
 | 
				
			||||||
| 
						 | 
					@ -29,6 +29,11 @@ def optimize_llm(model: torch.nn.Module):
 | 
				
			||||||
    if model.config.model_type == "llama":
 | 
					    if model.config.model_type == "llama":
 | 
				
			||||||
        from ipex_llm.transformers.npu_models.llama import merge_qkv
 | 
					        from ipex_llm.transformers.npu_models.llama import merge_qkv
 | 
				
			||||||
        model.apply(merge_qkv)
 | 
					        model.apply(merge_qkv)
 | 
				
			||||||
 | 
					        from ipex_llm.transformers.npu_models.llama import merge_mlp
 | 
				
			||||||
 | 
					        model.apply(merge_mlp)
 | 
				
			||||||
        from ipex_llm.transformers.npu_models.llama import llama_attention_forward
 | 
					        from ipex_llm.transformers.npu_models.llama import llama_attention_forward
 | 
				
			||||||
        from transformers.models.llama.modeling_llama import LlamaAttention
 | 
					        from transformers.models.llama.modeling_llama import LlamaAttention
 | 
				
			||||||
        convert_forward(model, LlamaAttention, llama_attention_forward)
 | 
					        convert_forward(model, LlamaAttention, llama_attention_forward)
 | 
				
			||||||
 | 
					        from ipex_llm.transformers.npu_models.llama import llama_mlp_forward
 | 
				
			||||||
 | 
					        from transformers.models.llama.modeling_llama import LlamaMLP
 | 
				
			||||||
 | 
					        convert_forward(model, LlamaMLP, llama_mlp_forward)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -36,35 +36,33 @@ from typing import Optional, Tuple
 | 
				
			||||||
from transformers.cache_utils import Cache
 | 
					from transformers.cache_utils import Cache
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
from transformers.models.llama.modeling_llama import LlamaAttention, repeat_kv, apply_rotary_pos_emb
 | 
					from transformers.models.llama.modeling_llama import repeat_kv, apply_rotary_pos_emb
 | 
				
			||||||
 | 
					from transformers.models.llama.modeling_llama import LlamaAttention, LlamaMLP
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from ipex_llm.transformers.npu_models.common import merge_linear
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def merge_qkv(module: torch.nn.Module):
 | 
					def merge_qkv(module: torch.nn.Module):
 | 
				
			||||||
    if isinstance(module, LlamaAttention):
 | 
					    if isinstance(module, LlamaAttention):
 | 
				
			||||||
        new_weight = torch.cat([
 | 
					        qkv_proj = merge_linear([
 | 
				
			||||||
            module.q_proj.weight.data,
 | 
					            module.q_proj,
 | 
				
			||||||
            module.k_proj.weight.data,
 | 
					            module.k_proj,
 | 
				
			||||||
            module.v_proj.weight.data,
 | 
					            module.v_proj,
 | 
				
			||||||
        ], dim=0)
 | 
					        ])
 | 
				
			||||||
 | 
					 | 
				
			||||||
        if module.q_proj.bias is not None:
 | 
					 | 
				
			||||||
            qkv_proj = torch.nn.Linear(0, 0, bias=True)
 | 
					 | 
				
			||||||
            new_bias = torch.cat([
 | 
					 | 
				
			||||||
                module.q_proj.bias.data,
 | 
					 | 
				
			||||||
                module.k_proj.bias.data,
 | 
					 | 
				
			||||||
                module.v_proj.bias.data,
 | 
					 | 
				
			||||||
            ], dim=0)
 | 
					 | 
				
			||||||
            qkv_proj.bias = torch.nn.Parameter(new_bias, requires_grad=False)
 | 
					 | 
				
			||||||
        else:
 | 
					 | 
				
			||||||
            qkv_proj = torch.nn.Linear(0, 0, bias=False)
 | 
					 | 
				
			||||||
        qkv_proj.weight = torch.nn.Parameter(new_weight, requires_grad=False)
 | 
					 | 
				
			||||||
        qkv_proj.in_features = new_weight.size(1)
 | 
					 | 
				
			||||||
        qkv_proj.out_features = new_weight.size(0)
 | 
					 | 
				
			||||||
        module.qkv_proj = qkv_proj
 | 
					        module.qkv_proj = qkv_proj
 | 
				
			||||||
 | 
					 | 
				
			||||||
        del module.q_proj, module.k_proj, module.v_proj
 | 
					        del module.q_proj, module.k_proj, module.v_proj
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def merge_mlp(module: torch.nn.Module):
 | 
				
			||||||
 | 
					    if isinstance(module, LlamaMLP):
 | 
				
			||||||
 | 
					        gate_up_proj = merge_linear([
 | 
				
			||||||
 | 
					            module.gate_proj,
 | 
				
			||||||
 | 
					            module.up_proj,
 | 
				
			||||||
 | 
					        ])
 | 
				
			||||||
 | 
					        module.gate_up_proj = gate_up_proj
 | 
				
			||||||
 | 
					        del module.gate_proj, module.up_proj
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def llama_attention_forward(
 | 
					def llama_attention_forward(
 | 
				
			||||||
    self,
 | 
					    self,
 | 
				
			||||||
    hidden_states: torch.Tensor,
 | 
					    hidden_states: torch.Tensor,
 | 
				
			||||||
| 
						 | 
					@ -121,3 +119,10 @@ def llama_attention_forward(
 | 
				
			||||||
        attn_weights = None
 | 
					        attn_weights = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    return attn_output, attn_weights, past_key_value
 | 
					    return attn_output, attn_weights, past_key_value
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def llama_mlp_forward(self, x):
 | 
				
			||||||
 | 
					    gate_up_proj = self.gate_up_proj(x)
 | 
				
			||||||
 | 
					    gate_proj, up_proj = gate_up_proj.chunk(2, dim=-1)
 | 
				
			||||||
 | 
					    down_proj = self.down_proj(self.act_fn(gate_proj) * up_proj)
 | 
				
			||||||
 | 
					    return down_proj
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue