LLM: support Qwen1.5-MoE-A2.7B-Chat pipeline parallel inference (#10864)
This commit is contained in:
parent
2d210817ff
commit
c9feffff9a
1 changed files with 197 additions and 1 deletions
|
|
@ -61,6 +61,20 @@ import os
|
||||||
|
|
||||||
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
|
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
|
||||||
|
|
||||||
|
from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask_for_sdpa
|
||||||
|
from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask
|
||||||
|
from transformers.modeling_outputs import MoeModelOutputWithPast
|
||||||
|
|
||||||
|
try:
|
||||||
|
from transformers.cache_utils import Cache, DynamicCache
|
||||||
|
except ImportError:
|
||||||
|
Cache = Tuple[torch.Tensor]
|
||||||
|
import logging
|
||||||
|
from transformers import logging
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def qwen2moe_model_forward(
|
def qwen2moe_model_forward(
|
||||||
self,
|
self,
|
||||||
|
|
@ -79,7 +93,7 @@ def qwen2moe_model_forward(
|
||||||
if use_cache and use_quantize_kv_cache(self.layers[0].mlp.shared_expert.up_proj, input_ids):
|
if use_cache and use_quantize_kv_cache(self.layers[0].mlp.shared_expert.up_proj, input_ids):
|
||||||
if not isinstance(past_key_values, DynamicFp8Cache):
|
if not isinstance(past_key_values, DynamicFp8Cache):
|
||||||
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
|
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
|
||||||
return Qwen2MoeModel.forward(
|
return qwen2_moe_model_forward_internal(
|
||||||
self=self,
|
self=self,
|
||||||
input_ids=input_ids,
|
input_ids=input_ids,
|
||||||
attention_mask=attention_mask,
|
attention_mask=attention_mask,
|
||||||
|
|
@ -94,6 +108,188 @@ def qwen2moe_model_forward(
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def qwen2_moe_model_forward_internal(
|
||||||
|
self,
|
||||||
|
input_ids: torch.LongTensor = None,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||||
|
use_cache: Optional[bool] = None,
|
||||||
|
output_attentions: Optional[bool] = None,
|
||||||
|
output_hidden_states: Optional[bool] = None,
|
||||||
|
output_router_logits: Optional[bool] = None,
|
||||||
|
return_dict: Optional[bool] = None,
|
||||||
|
) -> Union[Tuple, MoeModelOutputWithPast]:
|
||||||
|
output_attentions = output_attentions if output_attentions is not None \
|
||||||
|
else self.config.output_attentions
|
||||||
|
output_router_logits = (
|
||||||
|
output_router_logits if output_router_logits is not None else
|
||||||
|
self.config.output_router_logits
|
||||||
|
)
|
||||||
|
output_hidden_states = (
|
||||||
|
output_hidden_states if output_hidden_states is not None else
|
||||||
|
self.config.output_hidden_states
|
||||||
|
)
|
||||||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||||
|
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
|
||||||
|
# retrieve input_ids and inputs_embeds
|
||||||
|
if input_ids is not None and inputs_embeds is not None:
|
||||||
|
invalidInputError(False, "You cannot specify both decoder_input_ids and "
|
||||||
|
"decoder_inputs_embeds at the same time")
|
||||||
|
elif input_ids is not None:
|
||||||
|
batch_size, seq_length = input_ids.shape
|
||||||
|
elif inputs_embeds is not None:
|
||||||
|
batch_size, seq_length, _ = inputs_embeds.shape
|
||||||
|
else:
|
||||||
|
invalidInputError(False,
|
||||||
|
"You have to specify decoder_input_ids or decoder_inputs_embeds")
|
||||||
|
|
||||||
|
if self.gradient_checkpointing and self.training:
|
||||||
|
if use_cache:
|
||||||
|
logger.warning_once(
|
||||||
|
"`use_cache=True` is incompatible with gradient checkpointing."
|
||||||
|
" Setting `use_cache=False`..."
|
||||||
|
)
|
||||||
|
use_cache = False
|
||||||
|
|
||||||
|
past_key_values_length = 0
|
||||||
|
|
||||||
|
if use_cache:
|
||||||
|
use_legacy_cache = not isinstance(past_key_values, Cache)
|
||||||
|
if use_legacy_cache:
|
||||||
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
||||||
|
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
||||||
|
|
||||||
|
if position_ids is None:
|
||||||
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||||
|
position_ids = torch.arange(
|
||||||
|
past_key_values_length, seq_length + past_key_values_length,
|
||||||
|
dtype=torch.long, device=device
|
||||||
|
)
|
||||||
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
||||||
|
else:
|
||||||
|
position_ids = position_ids.view(-1, seq_length).long()
|
||||||
|
|
||||||
|
if inputs_embeds is None:
|
||||||
|
inputs_embeds = self.embed_tokens(input_ids)
|
||||||
|
|
||||||
|
if attention_mask is not None and self._attn_implementation == "flash_attention_2" \
|
||||||
|
and use_cache:
|
||||||
|
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
||||||
|
if is_padding_right:
|
||||||
|
invalidInputError(
|
||||||
|
False,
|
||||||
|
"You are attempting to perform batched generation with padding_side='right'"
|
||||||
|
" this may lead to unexpected behaviour for Flash Attention version of"
|
||||||
|
" Qwen2MoE. Make sure to call `tokenizer.padding_side='left'`"
|
||||||
|
" before tokenizing the input."
|
||||||
|
)
|
||||||
|
|
||||||
|
if self._attn_implementation == "flash_attention_2":
|
||||||
|
# 2d mask is passed through the layers
|
||||||
|
attention_mask = attention_mask if (attention_mask is not None and
|
||||||
|
0 in attention_mask) else None
|
||||||
|
elif self._attn_implementation == "sdpa" and not output_attentions:
|
||||||
|
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
||||||
|
# the manual implementation that requires a 4D causal mask in all cases.
|
||||||
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
||||||
|
attention_mask,
|
||||||
|
(batch_size, seq_length),
|
||||||
|
inputs_embeds,
|
||||||
|
past_key_values_length,
|
||||||
|
sliding_window=self.config.sliding_window,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# 4d mask is passed through the layers
|
||||||
|
attention_mask = _prepare_4d_causal_attention_mask(
|
||||||
|
attention_mask,
|
||||||
|
(batch_size, seq_length),
|
||||||
|
inputs_embeds,
|
||||||
|
past_key_values_length,
|
||||||
|
sliding_window=self.config.sliding_window,
|
||||||
|
)
|
||||||
|
|
||||||
|
hidden_states = inputs_embeds
|
||||||
|
|
||||||
|
# decoder layers
|
||||||
|
all_hidden_states = () if output_hidden_states else None
|
||||||
|
all_self_attns = () if output_attentions else None
|
||||||
|
all_router_logits = () if output_router_logits else None
|
||||||
|
next_decoder_cache = None
|
||||||
|
|
||||||
|
for decoder_layer in self.layers:
|
||||||
|
if output_hidden_states:
|
||||||
|
all_hidden_states += (hidden_states,)
|
||||||
|
|
||||||
|
if self.gradient_checkpointing and self.training:
|
||||||
|
layer_outputs = self._gradient_checkpointing_func(
|
||||||
|
decoder_layer.__call__,
|
||||||
|
hidden_states,
|
||||||
|
attention_mask,
|
||||||
|
position_ids,
|
||||||
|
past_key_values,
|
||||||
|
output_attentions,
|
||||||
|
output_router_logits,
|
||||||
|
use_cache,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# ipex-llm changes
|
||||||
|
curr_device = decoder_layer.input_layernorm.weight.device
|
||||||
|
if attention_mask is not None:
|
||||||
|
attention_mask = attention_mask.to(curr_device)
|
||||||
|
if position_ids is not None:
|
||||||
|
position_ids = position_ids.to(curr_device)
|
||||||
|
# ipex-llm changes end
|
||||||
|
layer_outputs = decoder_layer(
|
||||||
|
hidden_states,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
past_key_value=past_key_values,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
output_router_logits=output_router_logits,
|
||||||
|
use_cache=use_cache,
|
||||||
|
)
|
||||||
|
|
||||||
|
hidden_states = layer_outputs[0]
|
||||||
|
|
||||||
|
if use_cache:
|
||||||
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
||||||
|
|
||||||
|
if output_attentions:
|
||||||
|
all_self_attns += (layer_outputs[1],)
|
||||||
|
|
||||||
|
if output_router_logits and layer_outputs[-1] is not None:
|
||||||
|
all_router_logits += (layer_outputs[-1],)
|
||||||
|
|
||||||
|
hidden_states = self.norm(hidden_states)
|
||||||
|
|
||||||
|
# add hidden states from the last decoder layer
|
||||||
|
if output_hidden_states:
|
||||||
|
all_hidden_states += (hidden_states,)
|
||||||
|
|
||||||
|
next_cache = None
|
||||||
|
if use_cache:
|
||||||
|
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache \
|
||||||
|
else next_decoder_cache
|
||||||
|
|
||||||
|
if not return_dict:
|
||||||
|
return tuple(
|
||||||
|
v
|
||||||
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns,
|
||||||
|
all_router_logits] if v is not None
|
||||||
|
)
|
||||||
|
return MoeModelOutputWithPast(
|
||||||
|
last_hidden_state=hidden_states,
|
||||||
|
past_key_values=next_cache,
|
||||||
|
hidden_states=all_hidden_states,
|
||||||
|
attentions=all_self_attns,
|
||||||
|
router_logits=all_router_logits,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def qwen2moe_attention_forward(
|
def qwen2moe_attention_forward(
|
||||||
self,
|
self,
|
||||||
hidden_states: torch.Tensor,
|
hidden_states: torch.Tensor,
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue