vLLM: Update vLLM-cpu to v0.6.6-post1 (#12728)
Update vLLM-cpu to v0.6.6-post1
This commit is contained in:
parent
78cca0a68c
commit
c9b6c94a59
11 changed files with 2086 additions and 410 deletions
|
|
@ -16,6 +16,8 @@ RUN wget -qO /sbin/tini https://github.com/krallin/tini/releases/download/${TINI
|
|||
apt-get update && \
|
||||
apt-get install -y --no-install-recommends wrk patch g++ && \
|
||||
pip install --pre --upgrade ipex-llm[serving] && \
|
||||
apt-get install -y gcc-12 g++-12 libnuma-dev && \
|
||||
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12 && \
|
||||
# Fix Trivy CVE Issues
|
||||
pip install Jinja2==3.1.3 transformers==4.36.2 gradio==4.19.2 cryptography==42.0.4 && \
|
||||
# Fix Qwen model adapter in fastchat
|
||||
|
|
@ -24,10 +26,11 @@ RUN wget -qO /sbin/tini https://github.com/krallin/tini/releases/download/${TINI
|
|||
# Install vllm
|
||||
git clone https://github.com/vllm-project/vllm.git && \
|
||||
cd ./vllm && \
|
||||
git checkout v0.4.2 && \
|
||||
pip install wheel packaging ninja setuptools>=49.4.0 numpy && \
|
||||
git checkout v0.6.6.post1 && \
|
||||
pip install cmake>=3.26 wheel packaging ninja "setuptools-scm>=8" numpy && \
|
||||
pip install -v -r requirements-cpu.txt --extra-index-url https://download.pytorch.org/whl/cpu && \
|
||||
VLLM_TARGET_DEVICE=cpu python3 setup.py install
|
||||
VLLM_TARGET_DEVICE=cpu python3 setup.py install && \
|
||||
pip install ray
|
||||
|
||||
|
||||
COPY ./vllm_offline_inference.py /llm/
|
||||
|
|
|
|||
|
|
@ -693,7 +693,6 @@ def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
|
|||
out_features,
|
||||
mp_group,
|
||||
None,
|
||||
None,
|
||||
optimize_lm_head,
|
||||
None
|
||||
)
|
||||
|
|
|
|||
|
|
@ -749,7 +749,7 @@ class LowBitLinear(nn.Linear):
|
|||
dist.inference_all_reduce(result, group=self.mp_group)
|
||||
if self.bias is not None:
|
||||
result += self.bias
|
||||
return result
|
||||
return result.to(x.dtype)
|
||||
|
||||
|
||||
class FP16Linear(nn.Linear):
|
||||
|
|
|
|||
|
|
@ -13,9 +13,10 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
from .engine import IPEXLLMAsyncLLMEngine, IPEXLLMLLMEngine, IPEXLLMClass
|
||||
from .engine import IPEXLLMAsyncLLMEngine, IPEXLLMLLMEngine, IPEXLLMClass, run_mp_engine
|
||||
__all__ = [
|
||||
"IPEXLLMAsyncLLMEngine",
|
||||
"IPEXLLMLLMEngine",
|
||||
"IPEXLLMClass",
|
||||
"run_mp_engine",
|
||||
]
|
||||
|
|
|
|||
|
|
@ -13,18 +13,28 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from typing import List, Optional, Union
|
||||
from vllm.logger import init_logger
|
||||
from typing import Dict, Optional, Any, Union, Type
|
||||
from vllm.engine.llm_engine import LLMEngine
|
||||
from vllm.engine.async_llm_engine import AsyncLLMEngine
|
||||
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
|
||||
from vllm.entrypoints.llm import LLM
|
||||
from vllm.executor.ray_utils import initialize_ray_cluster
|
||||
from vllm.usage.usage_lib import (UsageContext, is_usage_stats_enabled,
|
||||
usage_message)
|
||||
from vllm.utils import Counter
|
||||
from vllm.config import VllmConfig
|
||||
from ipex_llm.vllm.cpu.model_convert import _ipex_llm_convert
|
||||
from vllm.usage.usage_lib import UsageContext
|
||||
from vllm.engine.metrics import StatLoggerBase
|
||||
from vllm.engine.multiprocessing.engine import MQLLMEngine
|
||||
import signal
|
||||
from vllm.engine.arg_utils import (EngineArgs, HfOverrides, PoolerConfig,
|
||||
TaskOption)
|
||||
from vllm.config import CompilationConfig
|
||||
from vllm.v1.engine.llm_engine import LLMEngine as V1LLMEngine
|
||||
from vllm import envs
|
||||
from vllm.v1.engine.async_llm import AsyncLLM
|
||||
import os
|
||||
|
||||
from ipex_llm.utils.common import invalidInputError
|
||||
logger = init_logger(__name__)
|
||||
|
||||
|
||||
class IPEXLLMAsyncLLMEngine(AsyncLLMEngine):
|
||||
|
|
@ -35,49 +45,43 @@ class IPEXLLMAsyncLLMEngine(AsyncLLMEngine):
|
|||
def from_engine_args(
|
||||
cls,
|
||||
engine_args: AsyncEngineArgs,
|
||||
engine_config: Optional[VllmConfig] = None,
|
||||
start_engine_loop: bool = True,
|
||||
usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
|
||||
load_in_low_bit: Optional[str] = None,
|
||||
load_in_low_bit: str = "sym_int4",
|
||||
stat_loggers: Optional[Dict[str, StatLoggerBase]]=None,
|
||||
) -> "AsyncLLMEngine":
|
||||
"""Creates an async LLM engine from the engine arguments."""
|
||||
# Enable ipex-llm optimizations
|
||||
engine_config = engine_args.create_engine_config()
|
||||
from ipex_llm.vllm.cpu.model_convert import _ipex_llm_convert
|
||||
# Create the engine configs.
|
||||
_ipex_llm_convert(load_in_low_bit)
|
||||
if engine_config.device_config.device_type == "neuron":
|
||||
from vllm.executor.neuron_executor import NeuronExecutorAsync
|
||||
executor_class = NeuronExecutorAsync
|
||||
elif engine_config.device_config.device_type == "cpu":
|
||||
invalidInputError(not engine_config.parallel_config.worker_use_ray, (
|
||||
"Ray is not supported with the CPU backend."))
|
||||
from vllm.executor.cpu_executor import CPUExecutorAsync
|
||||
executor_class = CPUExecutorAsync
|
||||
elif engine_config.parallel_config.worker_use_ray:
|
||||
initialize_ray_cluster(engine_config.parallel_config)
|
||||
from vllm.executor.ray_gpu_executor import RayGPUExecutorAsync
|
||||
executor_class = RayGPUExecutorAsync
|
||||
else:
|
||||
invalidInputError(engine_config.parallel_config.world_size == 1, (
|
||||
"Ray is required if parallel_config.world_size > 1."))
|
||||
from vllm.executor.gpu_executor import GPUExecutorAsync
|
||||
executor_class = GPUExecutorAsync
|
||||
# Create the async LLM engine.
|
||||
engine = cls(
|
||||
engine_config.parallel_config.worker_use_ray,
|
||||
engine_args.engine_use_ray,
|
||||
**engine_config.to_dict(),
|
||||
executor_class=executor_class,
|
||||
log_requests=not engine_args.disable_log_requests,
|
||||
log_stats=not engine_args.disable_log_stats,
|
||||
max_log_len=engine_args.max_log_len,
|
||||
return super().from_engine_args(engine_args=engine_args, engine_config=engine_config,
|
||||
start_engine_loop=start_engine_loop,
|
||||
usage_context=usage_context,
|
||||
)
|
||||
return engine
|
||||
usage_context=usage_context, stat_loggers=stat_loggers)
|
||||
|
||||
|
||||
class IPEXLLMAsyncV1Engine(AsyncLLM):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
print("IPEX-LLM V1 engine get started...")
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
@classmethod
|
||||
def from_engine_args(
|
||||
cls,
|
||||
engine_args: AsyncEngineArgs,
|
||||
engine_config: Optional[VllmConfig] = None,
|
||||
start_engine_loop: bool = True,
|
||||
usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
|
||||
load_in_low_bit: str = "sym_int4",
|
||||
stat_loggers: Optional[Dict[str, StatLoggerBase]]=None,
|
||||
) -> "AsyncLLM":
|
||||
_ipex_llm_convert(load_in_low_bit)
|
||||
return super().from_engine_args(engine_args=engine_args, engine_config=engine_config,
|
||||
start_engine_loop=start_engine_loop,
|
||||
usage_context=usage_context, stat_loggers=stat_loggers)
|
||||
|
||||
|
||||
class IPEXLLMClass(LLM):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: str,
|
||||
|
|
@ -85,6 +89,7 @@ class IPEXLLMClass(LLM):
|
|||
tokenizer_mode: str = "auto",
|
||||
skip_tokenizer_init: bool = False,
|
||||
trust_remote_code: bool = False,
|
||||
allowed_local_media_path: str = "",
|
||||
tensor_parallel_size: int = 1,
|
||||
dtype: str = "auto",
|
||||
quantization: Optional[str] = None,
|
||||
|
|
@ -92,22 +97,48 @@ class IPEXLLMClass(LLM):
|
|||
tokenizer_revision: Optional[str] = None,
|
||||
seed: int = 0,
|
||||
gpu_memory_utilization: float = 0.9,
|
||||
swap_space: int = 4,
|
||||
enforce_eager: bool = False,
|
||||
max_context_len_to_capture: Optional[int] = None,
|
||||
swap_space: float = 4,
|
||||
cpu_offload_gb: float = 0,
|
||||
enforce_eager: Optional[bool] = None,
|
||||
max_seq_len_to_capture: int = 8192,
|
||||
disable_custom_all_reduce: bool = False,
|
||||
load_in_low_bit: Optional[str] = None,
|
||||
disable_async_output_proc: bool = True,
|
||||
hf_overrides: Optional[HfOverrides] = None,
|
||||
mm_processor_kwargs: Optional[Dict[str, Any]]=None,
|
||||
# After positional args are removed, move this right below `model`
|
||||
task: TaskOption = "auto",
|
||||
override_pooler_config: Optional[PoolerConfig] = None,
|
||||
compilation_config: Optional[Union[int, Dict[str, Any]]]=None,
|
||||
load_in_low_bit: str = "sym_int4",
|
||||
**kwargs,
|
||||
) -> None:
|
||||
'''
|
||||
LLM constructor.
|
||||
|
||||
Note: if enforce_eager is unset (enforce_eager is None)
|
||||
it defaults to False.
|
||||
'''
|
||||
|
||||
if "disable_log_stats" not in kwargs:
|
||||
kwargs["disable_log_stats"] = True
|
||||
|
||||
if compilation_config is not None:
|
||||
if isinstance(compilation_config, (int, dict)):
|
||||
compilation_config_instance = CompilationConfig.from_cli(
|
||||
str(compilation_config))
|
||||
else:
|
||||
compilation_config_instance = compilation_config
|
||||
else:
|
||||
compilation_config_instance = None
|
||||
|
||||
engine_args = EngineArgs(
|
||||
model=model,
|
||||
task=task,
|
||||
tokenizer=tokenizer,
|
||||
tokenizer_mode=tokenizer_mode,
|
||||
skip_tokenizer_init=skip_tokenizer_init,
|
||||
trust_remote_code=trust_remote_code,
|
||||
allowed_local_media_path=allowed_local_media_path,
|
||||
tensor_parallel_size=tensor_parallel_size,
|
||||
dtype=dtype,
|
||||
quantization=quantization,
|
||||
|
|
@ -116,16 +147,60 @@ class IPEXLLMClass(LLM):
|
|||
seed=seed,
|
||||
gpu_memory_utilization=gpu_memory_utilization,
|
||||
swap_space=swap_space,
|
||||
cpu_offload_gb=cpu_offload_gb,
|
||||
enforce_eager=enforce_eager,
|
||||
max_context_len_to_capture=max_context_len_to_capture,
|
||||
max_seq_len_to_capture=max_seq_len_to_capture,
|
||||
disable_custom_all_reduce=disable_custom_all_reduce,
|
||||
disable_async_output_proc=disable_async_output_proc,
|
||||
hf_overrides=hf_overrides,
|
||||
mm_processor_kwargs=mm_processor_kwargs,
|
||||
override_pooler_config=override_pooler_config,
|
||||
compilation_config=compilation_config_instance,
|
||||
**kwargs,
|
||||
)
|
||||
self.llm_engine = IPEXLLMLLMEngine.from_engine_args(engine_args,
|
||||
# Logic to switch between engines is done at runtime instead of import
|
||||
# to avoid import order issues
|
||||
# TODO(gc): we will need to override this function
|
||||
self.engine_class = self.get_engine_class()
|
||||
self.llm_engine = self.engine_class.from_engine_args(
|
||||
engine_args, usage_context=UsageContext.LLM_CLASS,
|
||||
load_in_low_bit=load_in_low_bit)
|
||||
|
||||
self.request_counter = Counter()
|
||||
|
||||
@staticmethod
|
||||
def get_engine_class() -> Type[LLMEngine]:
|
||||
if envs.VLLM_USE_V1:
|
||||
# Lazy import: the v1 package isn't distributed
|
||||
# from vllm.v1.engine.llm_engine import LLMEngine as V1LLMEngine
|
||||
return IPEXLLMLLMV1Engine # type: ignore
|
||||
return IPEXLLMLLMEngine
|
||||
|
||||
|
||||
# TODO(gc): implement this later...
|
||||
class IPEXLLMLLMV1Engine(V1LLMEngine):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
@classmethod
|
||||
def from_engine_args(
|
||||
cls,
|
||||
engine_args: EngineArgs,
|
||||
usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
|
||||
stat_loggers: Optional[Dict[str, StatLoggerBase]]=None,
|
||||
enable_multiprocessing: bool = False,
|
||||
load_in_low_bit: str = "sym_int4",
|
||||
) -> "LLMEngine":
|
||||
"""Creates an LLM engine from the engine arguments."""
|
||||
# Create the engine configs.
|
||||
|
||||
# TODO(gc): delete this later
|
||||
print("IPEXLLM V1 Engine")
|
||||
# This does not work as it is in the seperate process...
|
||||
_ipex_llm_convert(load_in_low_bit)
|
||||
return super().from_engine_args(engine_args, usage_context,
|
||||
stat_loggers, enable_multiprocessing)
|
||||
|
||||
|
||||
class IPEXLLMLLMEngine(LLMEngine):
|
||||
def __init__(self, *args, **kwargs):
|
||||
|
|
@ -136,35 +211,44 @@ class IPEXLLMLLMEngine(LLMEngine):
|
|||
cls,
|
||||
engine_args: EngineArgs,
|
||||
usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
|
||||
load_in_low_bit: Optional[str] = None,
|
||||
stat_loggers: Optional[Dict[str, StatLoggerBase]]=None,
|
||||
load_in_low_bit: str = "sym_int4",
|
||||
) -> "LLMEngine":
|
||||
"""Creates an LLM engine from the engine arguments."""
|
||||
# Create the engine configs.
|
||||
engine_config = engine_args.create_engine_config()
|
||||
from ipex_llm.vllm.cpu.model_convert import _ipex_llm_convert
|
||||
# TODO(gc): Delete
|
||||
print("Use vLLM v0 engine")
|
||||
_ipex_llm_convert(load_in_low_bit)
|
||||
return super().from_engine_args(engine_args, usage_context, stat_loggers)
|
||||
|
||||
# Initialize the cluster and specify the executor class.
|
||||
if engine_config.device_config.device_type == "neuron":
|
||||
from vllm.executor.neuron_executor import NeuronExecutor
|
||||
executor_class = NeuronExecutor
|
||||
elif engine_config.device_config.device_type == "cpu":
|
||||
from vllm.executor.cpu_executor import CPUExecutor
|
||||
executor_class = CPUExecutor
|
||||
elif engine_config.parallel_config.worker_use_ray:
|
||||
initialize_ray_cluster(engine_config.parallel_config)
|
||||
from vllm.executor.ray_gpu_executor import RayGPUExecutor
|
||||
executor_class = RayGPUExecutor
|
||||
else:
|
||||
invalidInputError(engine_config.parallel_config.world_size == 1, (
|
||||
"Ray is required if parallel_config.world_size > 1."))
|
||||
from vllm.executor.gpu_executor import GPUExecutor
|
||||
executor_class = GPUExecutor
|
||||
|
||||
# Create the LLM engine.
|
||||
engine = cls(**engine_config.to_dict(),
|
||||
executor_class=executor_class,
|
||||
log_stats=not engine_args.disable_log_stats,
|
||||
class IPEXLLMMQLLMEngine(MQLLMEngine):
|
||||
@classmethod
|
||||
def from_engine_args(cls, engine_args: AsyncEngineArgs,
|
||||
usage_context: UsageContext, ipc_path: str, load_in_low_bit: str):
|
||||
_ipex_llm_convert(load_in_low_bit)
|
||||
return super().from_engine_args(engine_args, usage_context, ipc_path)
|
||||
|
||||
|
||||
def run_mp_engine(engine_args: AsyncEngineArgs, usage_context: UsageContext,
|
||||
ipc_path: str, load_in_low_bit: str, engine_alive):
|
||||
|
||||
def signal_handler(*_) -> None:
|
||||
# Interrupt server on sigterm
|
||||
raise KeyboardInterrupt("MQLLMEngine terminated") # noqa
|
||||
|
||||
try:
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
engine = IPEXLLMMQLLMEngine.from_engine_args(engine_args=engine_args,
|
||||
usage_context=usage_context,
|
||||
)
|
||||
return engine
|
||||
ipc_path=ipc_path,
|
||||
load_in_low_bit=load_in_low_bit)
|
||||
engine.start()
|
||||
except BaseException as e:
|
||||
logger.exception(e)
|
||||
engine_alive.value = False
|
||||
raise e # noqa
|
||||
|
||||
if os.getenv("VLLM_USE_V1"):
|
||||
IPEXLLMAsyncLLMEngine = IPEXLLMAsyncV1Engine
|
||||
|
|
|
|||
787
python/llm/src/ipex_llm/vllm/cpu/entrypoints/api_server.py
Normal file
787
python/llm/src/ipex_llm/vllm/cpu/entrypoints/api_server.py
Normal file
|
|
@ -0,0 +1,787 @@
|
|||
import asyncio
|
||||
import atexit
|
||||
import importlib
|
||||
import inspect
|
||||
import multiprocessing
|
||||
import os
|
||||
import re
|
||||
import signal
|
||||
import socket
|
||||
import tempfile
|
||||
import uuid
|
||||
from argparse import Namespace
|
||||
from contextlib import asynccontextmanager
|
||||
from functools import partial
|
||||
from http import HTTPStatus
|
||||
from typing import AsyncIterator, Optional, Set, Tuple
|
||||
|
||||
import uvloop
|
||||
from fastapi import APIRouter, FastAPI, Request
|
||||
from fastapi.exceptions import RequestValidationError
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from fastapi.responses import JSONResponse, Response, StreamingResponse
|
||||
from starlette.datastructures import State
|
||||
from starlette.routing import Mount
|
||||
from typing_extensions import assert_never
|
||||
|
||||
import vllm.envs as envs
|
||||
from vllm.config import ModelConfig
|
||||
from vllm.engine.arg_utils import AsyncEngineArgs
|
||||
# from vllm.engine.async_llm_engine import AsyncLLMEngine # type: ignore
|
||||
from ipex_llm.vllm.cpu.engine import IPEXLLMAsyncLLMEngine as AsyncLLMEngine
|
||||
from vllm.engine.multiprocessing.client import MQLLMEngineClient
|
||||
# from vllm.engine.multiprocessing.engine import run_mp_engine
|
||||
from ipex_llm.vllm.cpu.engine import run_mp_engine
|
||||
from vllm.engine.protocol import EngineClient
|
||||
from vllm.entrypoints.chat_utils import load_chat_template
|
||||
from vllm.entrypoints.launcher import serve_http
|
||||
from vllm.entrypoints.logger import RequestLogger
|
||||
from vllm.entrypoints.openai.cli_args import (make_arg_parser,
|
||||
validate_parsed_serve_args)
|
||||
from vllm.entrypoints.openai.serving_engine import OpenAIServing
|
||||
# yapf conflicts with isort for this block
|
||||
# yapf: disable
|
||||
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
CompletionRequest,
|
||||
CompletionResponse,
|
||||
DetokenizeRequest,
|
||||
DetokenizeResponse,
|
||||
EmbeddingRequest,
|
||||
EmbeddingResponse,
|
||||
EmbeddingResponseData,
|
||||
ErrorResponse,
|
||||
LoadLoraAdapterRequest,
|
||||
PoolingRequest, PoolingResponse,
|
||||
ScoreRequest, ScoreResponse,
|
||||
TokenizeRequest,
|
||||
TokenizeResponse,
|
||||
UnloadLoraAdapterRequest)
|
||||
# yapf: enable
|
||||
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
|
||||
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
|
||||
from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
|
||||
# from vllm.entrypoints.openai.serving_engine import BaseModelPath, OpenAIServing
|
||||
from vllm.entrypoints.openai.serving_models import (BaseModelPath,
|
||||
OpenAIServingModels)
|
||||
|
||||
from vllm.entrypoints.openai.serving_pooling import OpenAIServingPooling
|
||||
from vllm.entrypoints.openai.serving_score import OpenAIServingScores
|
||||
from vllm.entrypoints.openai.serving_tokenization import (
|
||||
OpenAIServingTokenization)
|
||||
from vllm.entrypoints.openai.tool_parsers import ToolParserManager
|
||||
from vllm.entrypoints.utils import with_cancellation
|
||||
from vllm.logger import init_logger
|
||||
from vllm.usage.usage_lib import UsageContext
|
||||
from vllm.utils import (FlexibleArgumentParser, get_open_zmq_ipc_path,
|
||||
is_valid_ipv6_address, set_ulimit)
|
||||
from vllm.version import __version__ as VLLM_VERSION
|
||||
|
||||
TIMEOUT_KEEP_ALIVE = 5 # seconds
|
||||
|
||||
prometheus_multiproc_dir: tempfile.TemporaryDirectory
|
||||
|
||||
# Cannot use __name__ (https://github.com/vllm-project/vllm/pull/4765)
|
||||
logger = init_logger('vllm.entrypoints.openai.api_server')
|
||||
|
||||
_running_tasks: Set[asyncio.Task] = set()
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
try:
|
||||
if app.state.log_stats:
|
||||
engine_client: EngineClient = app.state.engine_client
|
||||
|
||||
async def _force_log():
|
||||
while True:
|
||||
await asyncio.sleep(10.)
|
||||
await engine_client.do_log_stats()
|
||||
|
||||
task = asyncio.create_task(_force_log())
|
||||
_running_tasks.add(task)
|
||||
task.add_done_callback(_running_tasks.remove)
|
||||
else:
|
||||
task = None
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
if task is not None:
|
||||
task.cancel()
|
||||
finally:
|
||||
# Ensure app state including engine ref is gc'd
|
||||
del app.state
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def build_async_engine_client(
|
||||
args: Namespace) -> AsyncIterator[EngineClient]:
|
||||
|
||||
# Context manager to handle engine_client lifecycle
|
||||
# Ensures everything is shutdown and cleaned up on error/exit
|
||||
engine_args = AsyncEngineArgs.from_cli_args(args)
|
||||
|
||||
async with build_async_engine_client_from_engine_args(
|
||||
engine_args, args.disable_frontend_multiprocessing, args.load_in_low_bit) as engine:
|
||||
yield engine
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def build_async_engine_client_from_engine_args(
|
||||
engine_args: AsyncEngineArgs,
|
||||
disable_frontend_multiprocessing: bool = False,
|
||||
load_in_low_bit: str = "sym_int4",
|
||||
) -> AsyncIterator[EngineClient]:
|
||||
"""
|
||||
Create EngineClient, either:
|
||||
- in-process using the AsyncLLMEngine Directly
|
||||
- multiprocess using AsyncLLMEngine RPC
|
||||
|
||||
Returns the Client or None if the creation failed.
|
||||
"""
|
||||
|
||||
# Fall back
|
||||
# TODO: fill out feature matrix.
|
||||
if (MQLLMEngineClient.is_unsupported_config(engine_args)
|
||||
or envs.VLLM_USE_V1 or disable_frontend_multiprocessing):
|
||||
engine_config = engine_args.create_engine_config(
|
||||
UsageContext.OPENAI_API_SERVER)
|
||||
uses_ray = getattr(AsyncLLMEngine._get_executor_cls(engine_config),
|
||||
"uses_ray", False)
|
||||
|
||||
build_engine = partial(AsyncLLMEngine.from_engine_args,
|
||||
load_in_low_bit=load_in_low_bit,
|
||||
engine_args=engine_args,
|
||||
engine_config=engine_config,
|
||||
usage_context=UsageContext.OPENAI_API_SERVER)
|
||||
if uses_ray:
|
||||
# Must run in main thread with ray for its signal handlers to work
|
||||
engine_client = build_engine()
|
||||
else:
|
||||
engine_client = await asyncio.get_running_loop().run_in_executor(
|
||||
None, build_engine)
|
||||
|
||||
yield engine_client
|
||||
if hasattr(engine_client, "shutdown"):
|
||||
engine_client.shutdown()
|
||||
return
|
||||
|
||||
# Otherwise, use the multiprocessing AsyncLLMEngine.
|
||||
else:
|
||||
if "PROMETHEUS_MULTIPROC_DIR" not in os.environ:
|
||||
# Make TemporaryDirectory for prometheus multiprocessing
|
||||
# Note: global TemporaryDirectory will be automatically
|
||||
# cleaned up upon exit.
|
||||
global prometheus_multiproc_dir
|
||||
prometheus_multiproc_dir = tempfile.TemporaryDirectory()
|
||||
os.environ[
|
||||
"PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name
|
||||
else:
|
||||
logger.warning(
|
||||
"Found PROMETHEUS_MULTIPROC_DIR was set by user. "
|
||||
"This directory must be wiped between vLLM runs or "
|
||||
"you will find inaccurate metrics. Unset the variable "
|
||||
"and vLLM will properly handle cleanup.")
|
||||
|
||||
# Select random path for IPC.
|
||||
ipc_path = get_open_zmq_ipc_path()
|
||||
logger.debug("Multiprocessing frontend to use %s for IPC Path.",
|
||||
ipc_path)
|
||||
|
||||
# Start RPCServer in separate process (holds the LLMEngine).
|
||||
# the current process might have CUDA context,
|
||||
# so we need to spawn a new process
|
||||
context = multiprocessing.get_context("spawn")
|
||||
|
||||
# The Process can raise an exception during startup, which may
|
||||
# not actually result in an exitcode being reported. As a result
|
||||
# we use a shared variable to communicate the information.
|
||||
engine_alive = multiprocessing.Value('b', True, lock=False)
|
||||
engine_process = context.Process(target=run_mp_engine,
|
||||
args=(engine_args,
|
||||
UsageContext.OPENAI_API_SERVER,
|
||||
ipc_path, load_in_low_bit, engine_alive))
|
||||
engine_process.start()
|
||||
engine_pid = engine_process.pid
|
||||
assert engine_pid is not None, "Engine process failed to start."
|
||||
logger.info("Started engine process with PID %d", engine_pid)
|
||||
|
||||
def _cleanup_ipc_path():
|
||||
socket_path = ipc_path.replace("ipc://", "")
|
||||
if os.path.exists(socket_path):
|
||||
os.remove(socket_path)
|
||||
|
||||
# Ensure we clean up the local IPC socket file on exit.
|
||||
atexit.register(_cleanup_ipc_path)
|
||||
|
||||
# Build RPCClient, which conforms to EngineClient Protocol.
|
||||
engine_config = engine_args.create_engine_config()
|
||||
build_client = partial(MQLLMEngineClient, ipc_path, engine_config,
|
||||
engine_pid)
|
||||
mq_engine_client = await asyncio.get_running_loop().run_in_executor(
|
||||
None, build_client)
|
||||
try:
|
||||
while True:
|
||||
try:
|
||||
await mq_engine_client.setup()
|
||||
break
|
||||
except TimeoutError:
|
||||
if (not engine_process.is_alive()
|
||||
or not engine_alive.value):
|
||||
raise RuntimeError(
|
||||
"Engine process failed to start. See stack "
|
||||
"trace for the root cause.") from None
|
||||
|
||||
yield mq_engine_client # type: ignore[misc]
|
||||
finally:
|
||||
# Ensure rpc server process was terminated
|
||||
engine_process.terminate()
|
||||
|
||||
# Close all open connections to the backend
|
||||
mq_engine_client.close()
|
||||
|
||||
# Wait for engine process to join
|
||||
engine_process.join(4)
|
||||
if engine_process.exitcode is None:
|
||||
# Kill if taking longer than 5 seconds to stop
|
||||
engine_process.kill()
|
||||
|
||||
# Lazy import for prometheus multiprocessing.
|
||||
# We need to set PROMETHEUS_MULTIPROC_DIR environment variable
|
||||
# before prometheus_client is imported.
|
||||
# See https://prometheus.github.io/client_python/multiprocess/
|
||||
from prometheus_client import multiprocess
|
||||
multiprocess.mark_process_dead(engine_process.pid)
|
||||
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
def mount_metrics(app: FastAPI):
|
||||
# Lazy import for prometheus multiprocessing.
|
||||
# We need to set PROMETHEUS_MULTIPROC_DIR environment variable
|
||||
# before prometheus_client is imported.
|
||||
# See https://prometheus.github.io/client_python/multiprocess/
|
||||
from prometheus_client import (CollectorRegistry, make_asgi_app,
|
||||
multiprocess)
|
||||
|
||||
prometheus_multiproc_dir_path = os.getenv("PROMETHEUS_MULTIPROC_DIR", None)
|
||||
if prometheus_multiproc_dir_path is not None:
|
||||
logger.debug("vLLM to use %s as PROMETHEUS_MULTIPROC_DIR",
|
||||
prometheus_multiproc_dir_path)
|
||||
registry = CollectorRegistry()
|
||||
multiprocess.MultiProcessCollector(registry)
|
||||
|
||||
# Add prometheus asgi middleware to route /metrics requests
|
||||
metrics_route = Mount("/metrics", make_asgi_app(registry=registry))
|
||||
else:
|
||||
# Add prometheus asgi middleware to route /metrics requests
|
||||
metrics_route = Mount("/metrics", make_asgi_app())
|
||||
|
||||
# Workaround for 307 Redirect for /metrics
|
||||
metrics_route.path_regex = re.compile("^/metrics(?P<path>.*)$")
|
||||
app.routes.append(metrics_route)
|
||||
|
||||
|
||||
def base(request: Request) -> OpenAIServing:
|
||||
# Reuse the existing instance
|
||||
return tokenization(request)
|
||||
|
||||
|
||||
def chat(request: Request) -> Optional[OpenAIServingChat]:
|
||||
return request.app.state.openai_serving_chat
|
||||
|
||||
|
||||
def completion(request: Request) -> Optional[OpenAIServingCompletion]:
|
||||
return request.app.state.openai_serving_completion
|
||||
|
||||
|
||||
def pooling(request: Request) -> Optional[OpenAIServingPooling]:
|
||||
return request.app.state.openai_serving_pooling
|
||||
|
||||
|
||||
def embedding(request: Request) -> Optional[OpenAIServingEmbedding]:
|
||||
return request.app.state.openai_serving_embedding
|
||||
|
||||
|
||||
def score(request: Request) -> Optional[OpenAIServingScores]:
|
||||
return request.app.state.openai_serving_scores
|
||||
|
||||
|
||||
def tokenization(request: Request) -> OpenAIServingTokenization:
|
||||
return request.app.state.openai_serving_tokenization
|
||||
|
||||
|
||||
def engine_client(request: Request) -> EngineClient:
|
||||
return request.app.state.engine_client
|
||||
|
||||
|
||||
@router.get("/health")
|
||||
async def health(raw_request: Request) -> Response:
|
||||
"""Health check."""
|
||||
await engine_client(raw_request).check_health()
|
||||
return Response(status_code=200)
|
||||
|
||||
|
||||
@router.post("/tokenize")
|
||||
@with_cancellation
|
||||
async def tokenize(request: TokenizeRequest, raw_request: Request):
|
||||
handler = tokenization(raw_request)
|
||||
|
||||
generator = await handler.create_tokenize(request, raw_request)
|
||||
if isinstance(generator, ErrorResponse):
|
||||
return JSONResponse(content=generator.model_dump(),
|
||||
status_code=generator.code)
|
||||
elif isinstance(generator, TokenizeResponse):
|
||||
return JSONResponse(content=generator.model_dump())
|
||||
|
||||
assert_never(generator)
|
||||
|
||||
|
||||
@router.post("/detokenize")
|
||||
@with_cancellation
|
||||
async def detokenize(request: DetokenizeRequest, raw_request: Request):
|
||||
handler = tokenization(raw_request)
|
||||
|
||||
generator = await handler.create_detokenize(request, raw_request)
|
||||
if isinstance(generator, ErrorResponse):
|
||||
return JSONResponse(content=generator.model_dump(),
|
||||
status_code=generator.code)
|
||||
elif isinstance(generator, DetokenizeResponse):
|
||||
return JSONResponse(content=generator.model_dump())
|
||||
|
||||
assert_never(generator)
|
||||
|
||||
|
||||
@router.get("/v1/models")
|
||||
async def show_available_models(raw_request: Request):
|
||||
handler = base(raw_request)
|
||||
|
||||
models = await handler.show_available_models()
|
||||
return JSONResponse(content=models.model_dump())
|
||||
|
||||
|
||||
@router.get("/version")
|
||||
async def show_version():
|
||||
ver = {"version": VLLM_VERSION}
|
||||
return JSONResponse(content=ver)
|
||||
|
||||
|
||||
@router.post("/v1/chat/completions")
|
||||
@with_cancellation
|
||||
async def create_chat_completion(request: ChatCompletionRequest,
|
||||
raw_request: Request):
|
||||
handler = chat(raw_request)
|
||||
if handler is None:
|
||||
return base(raw_request).create_error_response(
|
||||
message="The model does not support Chat Completions API")
|
||||
|
||||
generator = await handler.create_chat_completion(request, raw_request)
|
||||
|
||||
if isinstance(generator, ErrorResponse):
|
||||
return JSONResponse(content=generator.model_dump(),
|
||||
status_code=generator.code)
|
||||
|
||||
elif isinstance(generator, ChatCompletionResponse):
|
||||
return JSONResponse(content=generator.model_dump())
|
||||
|
||||
return StreamingResponse(content=generator, media_type="text/event-stream")
|
||||
|
||||
|
||||
@router.post("/v1/completions")
|
||||
@with_cancellation
|
||||
async def create_completion(request: CompletionRequest, raw_request: Request):
|
||||
handler = completion(raw_request)
|
||||
if handler is None:
|
||||
return base(raw_request).create_error_response(
|
||||
message="The model does not support Completions API")
|
||||
|
||||
generator = await handler.create_completion(request, raw_request)
|
||||
if isinstance(generator, ErrorResponse):
|
||||
return JSONResponse(content=generator.model_dump(),
|
||||
status_code=generator.code)
|
||||
elif isinstance(generator, CompletionResponse):
|
||||
return JSONResponse(content=generator.model_dump())
|
||||
|
||||
return StreamingResponse(content=generator, media_type="text/event-stream")
|
||||
|
||||
|
||||
@router.post("/v1/embeddings")
|
||||
@with_cancellation
|
||||
async def create_embedding(request: EmbeddingRequest, raw_request: Request):
|
||||
handler = embedding(raw_request)
|
||||
if handler is None:
|
||||
fallback_handler = pooling(raw_request)
|
||||
if fallback_handler is None:
|
||||
return base(raw_request).create_error_response(
|
||||
message="The model does not support Embeddings API")
|
||||
|
||||
logger.warning(
|
||||
"Embeddings API will become exclusive to embedding models "
|
||||
"in a future release. To return the hidden states directly, "
|
||||
"use the Pooling API (`/pooling`) instead.")
|
||||
|
||||
res = await fallback_handler.create_pooling(request, raw_request)
|
||||
if isinstance(res, PoolingResponse):
|
||||
generator = EmbeddingResponse(
|
||||
id=res.id,
|
||||
object=res.object,
|
||||
created=res.created,
|
||||
model=res.model,
|
||||
data=[
|
||||
EmbeddingResponseData(
|
||||
index=d.index,
|
||||
embedding=d.data, # type: ignore
|
||||
) for d in res.data
|
||||
],
|
||||
usage=res.usage,
|
||||
)
|
||||
else:
|
||||
generator = res
|
||||
else:
|
||||
generator = await handler.create_embedding(request, raw_request)
|
||||
|
||||
if isinstance(generator, ErrorResponse):
|
||||
return JSONResponse(content=generator.model_dump(),
|
||||
status_code=generator.code)
|
||||
elif isinstance(generator, EmbeddingResponse):
|
||||
return JSONResponse(content=generator.model_dump())
|
||||
|
||||
assert_never(generator)
|
||||
|
||||
|
||||
@router.post("/pooling")
|
||||
@with_cancellation
|
||||
async def create_pooling(request: PoolingRequest, raw_request: Request):
|
||||
handler = pooling(raw_request)
|
||||
if handler is None:
|
||||
return base(raw_request).create_error_response(
|
||||
message="The model does not support Pooling API")
|
||||
|
||||
generator = await handler.create_pooling(request, raw_request)
|
||||
if isinstance(generator, ErrorResponse):
|
||||
return JSONResponse(content=generator.model_dump(),
|
||||
status_code=generator.code)
|
||||
elif isinstance(generator, PoolingResponse):
|
||||
return JSONResponse(content=generator.model_dump())
|
||||
|
||||
assert_never(generator)
|
||||
|
||||
|
||||
@router.post("/score")
|
||||
@with_cancellation
|
||||
async def create_score(request: ScoreRequest, raw_request: Request):
|
||||
handler = score(raw_request)
|
||||
if handler is None:
|
||||
return base(raw_request).create_error_response(
|
||||
message="The model does not support Score API")
|
||||
|
||||
generator = await handler.create_score(request, raw_request)
|
||||
if isinstance(generator, ErrorResponse):
|
||||
return JSONResponse(content=generator.model_dump(),
|
||||
status_code=generator.code)
|
||||
elif isinstance(generator, ScoreResponse):
|
||||
return JSONResponse(content=generator.model_dump())
|
||||
|
||||
assert_never(generator)
|
||||
|
||||
|
||||
@router.post("/v1/score")
|
||||
@with_cancellation
|
||||
async def create_score_v1(request: ScoreRequest, raw_request: Request):
|
||||
logger.warning(
|
||||
"To indicate that Score API is not part of standard OpenAI API, we "
|
||||
"have moved it to `/score`. Please update your client accordingly.")
|
||||
|
||||
return await create_score(request, raw_request)
|
||||
|
||||
|
||||
if envs.VLLM_TORCH_PROFILER_DIR:
|
||||
logger.warning(
|
||||
"Torch Profiler is enabled in the API server. This should ONLY be "
|
||||
"used for local development!")
|
||||
|
||||
@router.post("/start_profile")
|
||||
async def start_profile(raw_request: Request):
|
||||
logger.info("Starting profiler...")
|
||||
await engine_client(raw_request).start_profile()
|
||||
logger.info("Profiler started.")
|
||||
return Response(status_code=200)
|
||||
|
||||
@router.post("/stop_profile")
|
||||
async def stop_profile(raw_request: Request):
|
||||
logger.info("Stopping profiler...")
|
||||
await engine_client(raw_request).stop_profile()
|
||||
logger.info("Profiler stopped.")
|
||||
return Response(status_code=200)
|
||||
|
||||
|
||||
if envs.VLLM_ALLOW_RUNTIME_LORA_UPDATING:
|
||||
logger.warning(
|
||||
"Lora dynamic loading & unloading is enabled in the API server. "
|
||||
"This should ONLY be used for local development!")
|
||||
|
||||
@router.post("/v1/load_lora_adapter")
|
||||
async def load_lora_adapter(request: LoadLoraAdapterRequest,
|
||||
raw_request: Request):
|
||||
for route in [chat, completion, embedding]:
|
||||
handler = route(raw_request)
|
||||
if handler is not None:
|
||||
response = await handler.load_lora_adapter(request)
|
||||
if isinstance(response, ErrorResponse):
|
||||
return JSONResponse(content=response.model_dump(),
|
||||
status_code=response.code)
|
||||
|
||||
return Response(status_code=200, content=response)
|
||||
|
||||
@router.post("/v1/unload_lora_adapter")
|
||||
async def unload_lora_adapter(request: UnloadLoraAdapterRequest,
|
||||
raw_request: Request):
|
||||
for route in [chat, completion, embedding]:
|
||||
handler = route(raw_request)
|
||||
if handler is not None:
|
||||
response = await handler.unload_lora_adapter(request)
|
||||
if isinstance(response, ErrorResponse):
|
||||
return JSONResponse(content=response.model_dump(),
|
||||
status_code=response.code)
|
||||
|
||||
return Response(status_code=200, content=response)
|
||||
|
||||
|
||||
def build_app(args: Namespace) -> FastAPI:
|
||||
if args.disable_fastapi_docs:
|
||||
app = FastAPI(openapi_url=None,
|
||||
docs_url=None,
|
||||
redoc_url=None,
|
||||
lifespan=lifespan)
|
||||
else:
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
app.include_router(router)
|
||||
app.root_path = args.root_path
|
||||
|
||||
mount_metrics(app)
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=args.allowed_origins,
|
||||
allow_credentials=args.allow_credentials,
|
||||
allow_methods=args.allowed_methods,
|
||||
allow_headers=args.allowed_headers,
|
||||
)
|
||||
|
||||
@app.exception_handler(RequestValidationError)
|
||||
async def validation_exception_handler(_, exc):
|
||||
err = ErrorResponse(message=str(exc),
|
||||
type="BadRequestError",
|
||||
code=HTTPStatus.BAD_REQUEST)
|
||||
return JSONResponse(err.model_dump(),
|
||||
status_code=HTTPStatus.BAD_REQUEST)
|
||||
|
||||
if token := envs.VLLM_API_KEY or args.api_key:
|
||||
|
||||
@app.middleware("http")
|
||||
async def authentication(request: Request, call_next):
|
||||
if request.method == "OPTIONS":
|
||||
return await call_next(request)
|
||||
url_path = request.url.path
|
||||
if app.root_path and url_path.startswith(app.root_path):
|
||||
url_path = url_path[len(app.root_path):]
|
||||
if not url_path.startswith("/v1"):
|
||||
return await call_next(request)
|
||||
if request.headers.get("Authorization") != "Bearer " + token:
|
||||
return JSONResponse(content={"error": "Unauthorized"},
|
||||
status_code=401)
|
||||
return await call_next(request)
|
||||
|
||||
if args.enable_request_id_headers:
|
||||
logger.warning(
|
||||
"CAUTION: Enabling X-Request-Id headers in the API Server. "
|
||||
"This can harm performance at high QPS.")
|
||||
|
||||
@app.middleware("http")
|
||||
async def add_request_id(request: Request, call_next):
|
||||
request_id = request.headers.get(
|
||||
"X-Request-Id") or uuid.uuid4().hex
|
||||
response = await call_next(request)
|
||||
response.headers["X-Request-Id"] = request_id
|
||||
return response
|
||||
|
||||
for middleware in args.middleware:
|
||||
module_path, object_name = middleware.rsplit(".", 1)
|
||||
imported = getattr(importlib.import_module(module_path), object_name)
|
||||
if inspect.isclass(imported):
|
||||
app.add_middleware(imported)
|
||||
elif inspect.iscoroutinefunction(imported):
|
||||
app.middleware("http")(imported)
|
||||
else:
|
||||
raise ValueError(f"Invalid middleware {middleware}. "
|
||||
f"Must be a function or a class.")
|
||||
|
||||
return app
|
||||
|
||||
|
||||
def init_app_state(
|
||||
engine_client: EngineClient,
|
||||
model_config: ModelConfig,
|
||||
state: State,
|
||||
args: Namespace,
|
||||
) -> None:
|
||||
if args.served_model_name is not None:
|
||||
served_model_names = args.served_model_name
|
||||
else:
|
||||
served_model_names = [args.model]
|
||||
|
||||
if args.disable_log_requests:
|
||||
request_logger = None
|
||||
else:
|
||||
request_logger = RequestLogger(max_log_len=args.max_log_len)
|
||||
|
||||
base_model_paths = [
|
||||
BaseModelPath(name=name, model_path=args.model)
|
||||
for name in served_model_names
|
||||
]
|
||||
|
||||
state.engine_client = engine_client
|
||||
state.log_stats = not args.disable_log_stats
|
||||
|
||||
resolved_chat_template = load_chat_template(args.chat_template)
|
||||
logger.info("Using supplied chat template:\n%s", resolved_chat_template)
|
||||
|
||||
state.openai_serving_chat = OpenAIServingChat(
|
||||
engine_client,
|
||||
model_config,
|
||||
base_model_paths,
|
||||
args.response_role,
|
||||
lora_modules=args.lora_modules,
|
||||
prompt_adapters=args.prompt_adapters,
|
||||
request_logger=request_logger,
|
||||
chat_template=resolved_chat_template,
|
||||
chat_template_content_format=args.chat_template_content_format,
|
||||
return_tokens_as_token_ids=args.return_tokens_as_token_ids,
|
||||
enable_auto_tools=args.enable_auto_tool_choice,
|
||||
tool_parser=args.tool_call_parser,
|
||||
enable_prompt_tokens_details=args.enable_prompt_tokens_details,
|
||||
) if model_config.runner_type == "generate" else None
|
||||
state.openai_serving_completion = OpenAIServingCompletion(
|
||||
engine_client,
|
||||
model_config,
|
||||
base_model_paths,
|
||||
lora_modules=args.lora_modules,
|
||||
prompt_adapters=args.prompt_adapters,
|
||||
request_logger=request_logger,
|
||||
return_tokens_as_token_ids=args.return_tokens_as_token_ids,
|
||||
) if model_config.runner_type == "generate" else None
|
||||
state.openai_serving_pooling = OpenAIServingPooling(
|
||||
engine_client,
|
||||
model_config,
|
||||
base_model_paths,
|
||||
request_logger=request_logger,
|
||||
chat_template=resolved_chat_template,
|
||||
chat_template_content_format=args.chat_template_content_format,
|
||||
) if model_config.runner_type == "pooling" else None
|
||||
state.openai_serving_embedding = OpenAIServingEmbedding(
|
||||
engine_client,
|
||||
model_config,
|
||||
base_model_paths,
|
||||
request_logger=request_logger,
|
||||
chat_template=resolved_chat_template,
|
||||
chat_template_content_format=args.chat_template_content_format,
|
||||
) if model_config.task == "embed" else None
|
||||
state.openai_serving_scores = OpenAIServingScores(
|
||||
engine_client,
|
||||
model_config,
|
||||
base_model_paths,
|
||||
request_logger=request_logger
|
||||
) if model_config.task == "score" else None
|
||||
state.openai_serving_tokenization = OpenAIServingTokenization(
|
||||
engine_client,
|
||||
model_config,
|
||||
base_model_paths,
|
||||
lora_modules=args.lora_modules,
|
||||
request_logger=request_logger,
|
||||
chat_template=resolved_chat_template,
|
||||
chat_template_content_format=args.chat_template_content_format,
|
||||
)
|
||||
|
||||
|
||||
def create_server_socket(addr: Tuple[str, int]) -> socket.socket:
|
||||
family = socket.AF_INET
|
||||
if is_valid_ipv6_address(addr[0]):
|
||||
family = socket.AF_INET6
|
||||
|
||||
sock = socket.socket(family=family, type=socket.SOCK_STREAM)
|
||||
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
||||
sock.bind(addr)
|
||||
|
||||
return sock
|
||||
|
||||
|
||||
async def run_server(args, **uvicorn_kwargs) -> None:
|
||||
logger.info("vLLM API server version %s", VLLM_VERSION)
|
||||
logger.info("args: %s", args)
|
||||
|
||||
if args.tool_parser_plugin and len(args.tool_parser_plugin) > 3:
|
||||
ToolParserManager.import_tool_parser(args.tool_parser_plugin)
|
||||
|
||||
valide_tool_parses = ToolParserManager.tool_parsers.keys()
|
||||
if args.enable_auto_tool_choice \
|
||||
and args.tool_call_parser not in valide_tool_parses:
|
||||
raise KeyError(f"invalid tool call parser: {args.tool_call_parser} "
|
||||
f"(chose from {{ {','.join(valide_tool_parses)} }})")
|
||||
|
||||
# workaround to make sure that we bind the port before the engine is set up.
|
||||
# This avoids race conditions with ray.
|
||||
# see https://github.com/vllm-project/vllm/issues/8204
|
||||
sock_addr = (args.host or "", args.port)
|
||||
sock = create_server_socket(sock_addr)
|
||||
|
||||
# workaround to avoid footguns where uvicorn drops requests with too
|
||||
# many concurrent requests active
|
||||
set_ulimit()
|
||||
|
||||
def signal_handler(*_) -> None:
|
||||
# Interrupt server on sigterm while initializing
|
||||
raise KeyboardInterrupt("terminated")
|
||||
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
async with build_async_engine_client(args) as engine_client:
|
||||
app = build_app(args)
|
||||
|
||||
model_config = await engine_client.get_model_config()
|
||||
init_app_state(engine_client, model_config, app.state, args)
|
||||
|
||||
shutdown_task = await serve_http(
|
||||
app,
|
||||
host=args.host,
|
||||
port=args.port,
|
||||
log_level=args.uvicorn_log_level,
|
||||
timeout_keep_alive=TIMEOUT_KEEP_ALIVE,
|
||||
ssl_keyfile=args.ssl_keyfile,
|
||||
ssl_certfile=args.ssl_certfile,
|
||||
ssl_ca_certs=args.ssl_ca_certs,
|
||||
ssl_cert_reqs=args.ssl_cert_reqs,
|
||||
**uvicorn_kwargs,
|
||||
)
|
||||
|
||||
# NB: Await server shutdown only after the backend context is exited
|
||||
await shutdown_task
|
||||
|
||||
sock.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# NOTE(simon):
|
||||
# This section should be in sync with vllm/scripts.py for CLI entrypoints.
|
||||
parser = FlexibleArgumentParser(
|
||||
description="vLLM OpenAI-Compatible RESTful API server.")
|
||||
parser = make_arg_parser(parser)
|
||||
parser.add_argument(
|
||||
"--load-in-low-bit",
|
||||
type=str,
|
||||
default="sym_int4",
|
||||
help="Low-bit quantization for IPEX-LLM models")
|
||||
args = parser.parse_args()
|
||||
validate_parsed_serve_args(args)
|
||||
|
||||
uvloop.run(run_server(args))
|
||||
|
|
@ -1,138 +1,559 @@
|
|||
import asyncio
|
||||
import atexit
|
||||
import importlib
|
||||
import inspect
|
||||
import multiprocessing
|
||||
import os
|
||||
import re
|
||||
import signal
|
||||
import socket
|
||||
import tempfile
|
||||
import uuid
|
||||
from argparse import Namespace
|
||||
from contextlib import asynccontextmanager
|
||||
from functools import partial
|
||||
from http import HTTPStatus
|
||||
from typing import Any, Set
|
||||
from typing import AsyncIterator, Optional, Set, Tuple
|
||||
|
||||
import fastapi
|
||||
import uvicorn
|
||||
from fastapi import Request
|
||||
import uvloop
|
||||
from fastapi import APIRouter, FastAPI, Request
|
||||
from fastapi.exceptions import RequestValidationError
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from fastapi.responses import JSONResponse, Response, StreamingResponse
|
||||
from prometheus_client import make_asgi_app
|
||||
from starlette.datastructures import State
|
||||
from starlette.routing import Mount
|
||||
from typing_extensions import assert_never
|
||||
|
||||
import vllm
|
||||
import vllm.envs as envs
|
||||
from vllm.config import ModelConfig
|
||||
from vllm.engine.arg_utils import AsyncEngineArgs
|
||||
from vllm.engine.async_llm_engine import AsyncLLMEngine
|
||||
from vllm.entrypoints.openai.cli_args import make_arg_parser
|
||||
from ipex_llm.vllm.cpu.engine import IPEXLLMAsyncLLMEngine as AsyncLLMEngine
|
||||
from vllm.engine.multiprocessing.client import MQLLMEngineClient
|
||||
from ipex_llm.vllm.cpu.engine import run_mp_engine
|
||||
from vllm.engine.protocol import EngineClient
|
||||
from vllm.entrypoints.chat_utils import load_chat_template
|
||||
from vllm.entrypoints.launcher import serve_http
|
||||
from vllm.entrypoints.logger import RequestLogger
|
||||
from vllm.entrypoints.openai.cli_args import (make_arg_parser,
|
||||
validate_parsed_serve_args)
|
||||
# yapf conflicts with isort for this block
|
||||
# yapf: disable
|
||||
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
CompletionRequest, ErrorResponse)
|
||||
CompletionRequest,
|
||||
CompletionResponse,
|
||||
DetokenizeRequest,
|
||||
DetokenizeResponse,
|
||||
EmbeddingRequest,
|
||||
EmbeddingResponse,
|
||||
EmbeddingResponseData,
|
||||
ErrorResponse,
|
||||
LoadLoraAdapterRequest,
|
||||
PoolingRequest, PoolingResponse,
|
||||
ScoreRequest, ScoreResponse,
|
||||
TokenizeRequest,
|
||||
TokenizeResponse,
|
||||
UnloadLoraAdapterRequest)
|
||||
# yapf: enable
|
||||
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
|
||||
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
|
||||
from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
|
||||
from vllm.entrypoints.openai.serving_engine import BaseModelPath, OpenAIServing
|
||||
from vllm.entrypoints.openai.serving_pooling import OpenAIServingPooling
|
||||
from vllm.entrypoints.openai.serving_score import OpenAIServingScores
|
||||
from vllm.entrypoints.openai.serving_tokenization import (
|
||||
OpenAIServingTokenization)
|
||||
from vllm.entrypoints.openai.tool_parsers import ToolParserManager
|
||||
from vllm.entrypoints.utils import with_cancellation
|
||||
from vllm.logger import init_logger
|
||||
from vllm.usage.usage_lib import UsageContext
|
||||
|
||||
from ipex_llm.vllm.cpu.engine import IPEXLLMAsyncLLMEngine
|
||||
from ipex_llm.utils.common import invalidInputError
|
||||
from vllm.utils import (FlexibleArgumentParser, get_open_zmq_ipc_path,
|
||||
is_valid_ipv6_address, set_ulimit)
|
||||
from vllm.version import __version__ as VLLM_VERSION
|
||||
|
||||
TIMEOUT_KEEP_ALIVE = 5 # seconds
|
||||
|
||||
openai_serving_chat: OpenAIServingChat
|
||||
openai_serving_completion: OpenAIServingCompletion
|
||||
logger = init_logger(__name__)
|
||||
prometheus_multiproc_dir: tempfile.TemporaryDirectory
|
||||
|
||||
_running_tasks: Set[asyncio.Task[Any]] = set()
|
||||
# Cannot use __name__ (https://github.com/vllm-project/vllm/pull/4765)
|
||||
logger = init_logger('vllm.entrypoints.openai.api_server')
|
||||
|
||||
_running_tasks: Set[asyncio.Task] = set()
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: fastapi.FastAPI):
|
||||
async def lifespan(app: FastAPI):
|
||||
try:
|
||||
if app.state.log_stats:
|
||||
engine_client: EngineClient = app.state.engine_client
|
||||
|
||||
async def _force_log():
|
||||
while True:
|
||||
await asyncio.sleep(10)
|
||||
await engine.do_log_stats()
|
||||
await asyncio.sleep(10.)
|
||||
await engine_client.do_log_stats()
|
||||
|
||||
if not engine_args.disable_log_stats:
|
||||
task = asyncio.create_task(_force_log())
|
||||
_running_tasks.add(task)
|
||||
task.add_done_callback(_running_tasks.remove)
|
||||
|
||||
else:
|
||||
task = None
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
if task is not None:
|
||||
task.cancel()
|
||||
finally:
|
||||
# Ensure app state including engine ref is gc'd
|
||||
del app.state
|
||||
|
||||
|
||||
app = fastapi.FastAPI(lifespan=lifespan)
|
||||
@asynccontextmanager
|
||||
async def build_async_engine_client(
|
||||
args: Namespace) -> AsyncIterator[EngineClient]:
|
||||
|
||||
# Context manager to handle engine_client lifecycle
|
||||
# Ensures everything is shutdown and cleaned up on error/exit
|
||||
engine_args = AsyncEngineArgs.from_cli_args(args)
|
||||
|
||||
async with build_async_engine_client_from_engine_args(
|
||||
engine_args, args.disable_frontend_multiprocessing, args.load_in_low_bit) as engine:
|
||||
yield engine
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = make_arg_parser()
|
||||
parser.add_argument(
|
||||
"--load-in-low-bit",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Low-bit quantization for IPEX-LLM models")
|
||||
return parser.parse_args()
|
||||
@asynccontextmanager
|
||||
async def build_async_engine_client_from_engine_args(
|
||||
engine_args: AsyncEngineArgs,
|
||||
disable_frontend_multiprocessing: bool = False,
|
||||
load_in_low_bit: str = "sym_int4",
|
||||
) -> AsyncIterator[EngineClient]:
|
||||
"""
|
||||
Create EngineClient, either:
|
||||
- in-process using the AsyncLLMEngine Directly
|
||||
- multiprocess using AsyncLLMEngine RPC
|
||||
|
||||
Returns the Client or None if the creation failed.
|
||||
"""
|
||||
|
||||
# Fall back
|
||||
# TODO: fill out feature matrix.
|
||||
if (MQLLMEngineClient.is_unsupported_config(engine_args)
|
||||
or envs.VLLM_USE_V1 or disable_frontend_multiprocessing):
|
||||
engine_config = engine_args.create_engine_config(
|
||||
UsageContext.OPENAI_API_SERVER)
|
||||
uses_ray = getattr(AsyncLLMEngine._get_executor_cls(engine_config),
|
||||
"uses_ray", False)
|
||||
|
||||
build_engine = partial(AsyncLLMEngine.from_engine_args,
|
||||
engine_args=engine_args,
|
||||
engine_config=engine_config,
|
||||
load_in_low_bit=load_in_low_bit,
|
||||
usage_context=UsageContext.OPENAI_API_SERVER)
|
||||
if uses_ray:
|
||||
# Must run in main thread with ray for its signal handlers to work
|
||||
engine_client = build_engine()
|
||||
else:
|
||||
engine_client = await asyncio.get_running_loop().run_in_executor(
|
||||
None, build_engine)
|
||||
|
||||
yield engine_client
|
||||
if hasattr(engine_client, "shutdown"):
|
||||
engine_client.shutdown()
|
||||
return
|
||||
|
||||
# Otherwise, use the multiprocessing AsyncLLMEngine.
|
||||
else:
|
||||
if "PROMETHEUS_MULTIPROC_DIR" not in os.environ:
|
||||
# Make TemporaryDirectory for prometheus multiprocessing
|
||||
# Note: global TemporaryDirectory will be automatically
|
||||
# cleaned up upon exit.
|
||||
global prometheus_multiproc_dir
|
||||
prometheus_multiproc_dir = tempfile.TemporaryDirectory()
|
||||
os.environ[
|
||||
"PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name
|
||||
else:
|
||||
logger.warning(
|
||||
"Found PROMETHEUS_MULTIPROC_DIR was set by user. "
|
||||
"This directory must be wiped between vLLM runs or "
|
||||
"you will find inaccurate metrics. Unset the variable "
|
||||
"and vLLM will properly handle cleanup.")
|
||||
|
||||
# Select random path for IPC.
|
||||
ipc_path = get_open_zmq_ipc_path()
|
||||
logger.debug("Multiprocessing frontend to use %s for IPC Path.",
|
||||
ipc_path)
|
||||
|
||||
# Start RPCServer in separate process (holds the LLMEngine).
|
||||
# the current process might have CUDA context,
|
||||
# so we need to spawn a new process
|
||||
context = multiprocessing.get_context("spawn")
|
||||
|
||||
# The Process can raise an exception during startup, which may
|
||||
# not actually result in an exitcode being reported. As a result
|
||||
# we use a shared variable to communicate the information.
|
||||
engine_alive = multiprocessing.Value('b', True, lock=False)
|
||||
engine_process = context.Process(target=run_mp_engine,
|
||||
args=(engine_args,
|
||||
UsageContext.OPENAI_API_SERVER,
|
||||
ipc_path, load_in_low_bit, engine_alive))
|
||||
engine_process.start()
|
||||
engine_pid = engine_process.pid
|
||||
assert engine_pid is not None, "Engine process failed to start."
|
||||
logger.info("Started engine process with PID %d", engine_pid)
|
||||
|
||||
def _cleanup_ipc_path():
|
||||
socket_path = ipc_path.replace("ipc://", "")
|
||||
if os.path.exists(socket_path):
|
||||
os.remove(socket_path)
|
||||
|
||||
# Ensure we clean up the local IPC socket file on exit.
|
||||
atexit.register(_cleanup_ipc_path)
|
||||
|
||||
# Build RPCClient, which conforms to EngineClient Protocol.
|
||||
engine_config = engine_args.create_engine_config()
|
||||
build_client = partial(MQLLMEngineClient, ipc_path, engine_config,
|
||||
engine_pid)
|
||||
mq_engine_client = await asyncio.get_running_loop().run_in_executor(
|
||||
None, build_client)
|
||||
try:
|
||||
while True:
|
||||
try:
|
||||
await mq_engine_client.setup()
|
||||
break
|
||||
except TimeoutError:
|
||||
if (not engine_process.is_alive()
|
||||
or not engine_alive.value):
|
||||
raise RuntimeError(
|
||||
"Engine process failed to start. See stack "
|
||||
"trace for the root cause.") from None
|
||||
|
||||
yield mq_engine_client # type: ignore[misc]
|
||||
finally:
|
||||
# Ensure rpc server process was terminated
|
||||
engine_process.terminate()
|
||||
|
||||
# Close all open connections to the backend
|
||||
mq_engine_client.close()
|
||||
|
||||
# Wait for engine process to join
|
||||
engine_process.join(4)
|
||||
if engine_process.exitcode is None:
|
||||
# Kill if taking longer than 5 seconds to stop
|
||||
engine_process.kill()
|
||||
|
||||
# Lazy import for prometheus multiprocessing.
|
||||
# We need to set PROMETHEUS_MULTIPROC_DIR environment variable
|
||||
# before prometheus_client is imported.
|
||||
# See https://prometheus.github.io/client_python/multiprocess/
|
||||
from prometheus_client import multiprocess
|
||||
multiprocess.mark_process_dead(engine_process.pid)
|
||||
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
def mount_metrics(app: FastAPI):
|
||||
# Lazy import for prometheus multiprocessing.
|
||||
# We need to set PROMETHEUS_MULTIPROC_DIR environment variable
|
||||
# before prometheus_client is imported.
|
||||
# See https://prometheus.github.io/client_python/multiprocess/
|
||||
from prometheus_client import (CollectorRegistry, make_asgi_app,
|
||||
multiprocess)
|
||||
|
||||
prometheus_multiproc_dir_path = os.getenv("PROMETHEUS_MULTIPROC_DIR", None)
|
||||
if prometheus_multiproc_dir_path is not None:
|
||||
logger.debug("vLLM to use %s as PROMETHEUS_MULTIPROC_DIR",
|
||||
prometheus_multiproc_dir_path)
|
||||
registry = CollectorRegistry()
|
||||
multiprocess.MultiProcessCollector(registry)
|
||||
|
||||
# Add prometheus asgi middleware to route /metrics requests
|
||||
route = Mount("/metrics", make_asgi_app())
|
||||
metrics_route = Mount("/metrics", make_asgi_app(registry=registry))
|
||||
else:
|
||||
# Add prometheus asgi middleware to route /metrics requests
|
||||
metrics_route = Mount("/metrics", make_asgi_app())
|
||||
|
||||
# Workaround for 307 Redirect for /metrics
|
||||
route.path_regex = re.compile('^/metrics(?P<path>.*)$')
|
||||
app.routes.append(route)
|
||||
metrics_route.path_regex = re.compile("^/metrics(?P<path>.*)$")
|
||||
app.routes.append(metrics_route)
|
||||
|
||||
|
||||
@app.exception_handler(RequestValidationError)
|
||||
async def validation_exception_handler(_, exc):
|
||||
err = openai_serving_chat.create_error_response(message=str(exc))
|
||||
return JSONResponse(err.model_dump(), status_code=HTTPStatus.BAD_REQUEST)
|
||||
def base(request: Request) -> OpenAIServing:
|
||||
# Reuse the existing instance
|
||||
return tokenization(request)
|
||||
|
||||
|
||||
@app.get("/health")
|
||||
async def health() -> Response:
|
||||
def chat(request: Request) -> Optional[OpenAIServingChat]:
|
||||
return request.app.state.openai_serving_chat
|
||||
|
||||
|
||||
def completion(request: Request) -> Optional[OpenAIServingCompletion]:
|
||||
return request.app.state.openai_serving_completion
|
||||
|
||||
|
||||
def pooling(request: Request) -> Optional[OpenAIServingPooling]:
|
||||
return request.app.state.openai_serving_pooling
|
||||
|
||||
|
||||
def embedding(request: Request) -> Optional[OpenAIServingEmbedding]:
|
||||
return request.app.state.openai_serving_embedding
|
||||
|
||||
|
||||
def score(request: Request) -> Optional[OpenAIServingScores]:
|
||||
return request.app.state.openai_serving_scores
|
||||
|
||||
|
||||
def tokenization(request: Request) -> OpenAIServingTokenization:
|
||||
return request.app.state.openai_serving_tokenization
|
||||
|
||||
|
||||
def engine_client(request: Request) -> EngineClient:
|
||||
return request.app.state.engine_client
|
||||
|
||||
|
||||
@router.get("/health")
|
||||
async def health(raw_request: Request) -> Response:
|
||||
"""Health check."""
|
||||
await openai_serving_chat.engine.check_health()
|
||||
await engine_client(raw_request).check_health()
|
||||
return Response(status_code=200)
|
||||
|
||||
|
||||
@app.get("/v1/models")
|
||||
async def show_available_models():
|
||||
models = await openai_serving_chat.show_available_models()
|
||||
@router.post("/tokenize")
|
||||
@with_cancellation
|
||||
async def tokenize(request: TokenizeRequest, raw_request: Request):
|
||||
handler = tokenization(raw_request)
|
||||
|
||||
generator = await handler.create_tokenize(request, raw_request)
|
||||
if isinstance(generator, ErrorResponse):
|
||||
return JSONResponse(content=generator.model_dump(),
|
||||
status_code=generator.code)
|
||||
elif isinstance(generator, TokenizeResponse):
|
||||
return JSONResponse(content=generator.model_dump())
|
||||
|
||||
assert_never(generator)
|
||||
|
||||
|
||||
@router.post("/detokenize")
|
||||
@with_cancellation
|
||||
async def detokenize(request: DetokenizeRequest, raw_request: Request):
|
||||
handler = tokenization(raw_request)
|
||||
|
||||
generator = await handler.create_detokenize(request, raw_request)
|
||||
if isinstance(generator, ErrorResponse):
|
||||
return JSONResponse(content=generator.model_dump(),
|
||||
status_code=generator.code)
|
||||
elif isinstance(generator, DetokenizeResponse):
|
||||
return JSONResponse(content=generator.model_dump())
|
||||
|
||||
assert_never(generator)
|
||||
|
||||
|
||||
@router.get("/v1/models")
|
||||
async def show_available_models(raw_request: Request):
|
||||
handler = base(raw_request)
|
||||
|
||||
models = await handler.show_available_models()
|
||||
return JSONResponse(content=models.model_dump())
|
||||
|
||||
|
||||
@app.get("/version")
|
||||
@router.get("/version")
|
||||
async def show_version():
|
||||
ver = {"version": vllm.__version__}
|
||||
ver = {"version": VLLM_VERSION}
|
||||
return JSONResponse(content=ver)
|
||||
|
||||
|
||||
@app.post("/v1/chat/completions")
|
||||
@router.post("/v1/chat/completions")
|
||||
@with_cancellation
|
||||
async def create_chat_completion(request: ChatCompletionRequest,
|
||||
raw_request: Request):
|
||||
generator = await openai_serving_chat.create_chat_completion(
|
||||
request, raw_request)
|
||||
handler = chat(raw_request)
|
||||
if handler is None:
|
||||
return base(raw_request).create_error_response(
|
||||
message="The model does not support Chat Completions API")
|
||||
|
||||
generator = await handler.create_chat_completion(request, raw_request)
|
||||
|
||||
if isinstance(generator, ErrorResponse):
|
||||
return JSONResponse(content=generator.model_dump(),
|
||||
status_code=generator.code)
|
||||
if request.stream:
|
||||
return StreamingResponse(content=generator,
|
||||
media_type="text/event-stream")
|
||||
else:
|
||||
|
||||
elif isinstance(generator, ChatCompletionResponse):
|
||||
return JSONResponse(content=generator.model_dump())
|
||||
|
||||
return StreamingResponse(content=generator, media_type="text/event-stream")
|
||||
|
||||
@app.post("/v1/completions")
|
||||
|
||||
@router.post("/v1/completions")
|
||||
@with_cancellation
|
||||
async def create_completion(request: CompletionRequest, raw_request: Request):
|
||||
generator = await openai_serving_completion.create_completion(
|
||||
request, raw_request)
|
||||
handler = completion(raw_request)
|
||||
if handler is None:
|
||||
return base(raw_request).create_error_response(
|
||||
message="The model does not support Completions API")
|
||||
|
||||
generator = await handler.create_completion(request, raw_request)
|
||||
if isinstance(generator, ErrorResponse):
|
||||
return JSONResponse(content=generator.model_dump(),
|
||||
status_code=generator.code)
|
||||
if request.stream:
|
||||
return StreamingResponse(content=generator,
|
||||
media_type="text/event-stream")
|
||||
else:
|
||||
elif isinstance(generator, CompletionResponse):
|
||||
return JSONResponse(content=generator.model_dump())
|
||||
|
||||
return StreamingResponse(content=generator, media_type="text/event-stream")
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_args()
|
||||
|
||||
@router.post("/v1/embeddings")
|
||||
@with_cancellation
|
||||
async def create_embedding(request: EmbeddingRequest, raw_request: Request):
|
||||
handler = embedding(raw_request)
|
||||
if handler is None:
|
||||
fallback_handler = pooling(raw_request)
|
||||
if fallback_handler is None:
|
||||
return base(raw_request).create_error_response(
|
||||
message="The model does not support Embeddings API")
|
||||
|
||||
logger.warning(
|
||||
"Embeddings API will become exclusive to embedding models "
|
||||
"in a future release. To return the hidden states directly, "
|
||||
"use the Pooling API (`/pooling`) instead.")
|
||||
|
||||
res = await fallback_handler.create_pooling(request, raw_request)
|
||||
if isinstance(res, PoolingResponse):
|
||||
generator = EmbeddingResponse(
|
||||
id=res.id,
|
||||
object=res.object,
|
||||
created=res.created,
|
||||
model=res.model,
|
||||
data=[
|
||||
EmbeddingResponseData(
|
||||
index=d.index,
|
||||
embedding=d.data, # type: ignore
|
||||
) for d in res.data
|
||||
],
|
||||
usage=res.usage,
|
||||
)
|
||||
else:
|
||||
generator = res
|
||||
else:
|
||||
generator = await handler.create_embedding(request, raw_request)
|
||||
|
||||
if isinstance(generator, ErrorResponse):
|
||||
return JSONResponse(content=generator.model_dump(),
|
||||
status_code=generator.code)
|
||||
elif isinstance(generator, EmbeddingResponse):
|
||||
return JSONResponse(content=generator.model_dump())
|
||||
|
||||
assert_never(generator)
|
||||
|
||||
|
||||
@router.post("/pooling")
|
||||
@with_cancellation
|
||||
async def create_pooling(request: PoolingRequest, raw_request: Request):
|
||||
handler = pooling(raw_request)
|
||||
if handler is None:
|
||||
return base(raw_request).create_error_response(
|
||||
message="The model does not support Pooling API")
|
||||
|
||||
generator = await handler.create_pooling(request, raw_request)
|
||||
if isinstance(generator, ErrorResponse):
|
||||
return JSONResponse(content=generator.model_dump(),
|
||||
status_code=generator.code)
|
||||
elif isinstance(generator, PoolingResponse):
|
||||
return JSONResponse(content=generator.model_dump())
|
||||
|
||||
assert_never(generator)
|
||||
|
||||
|
||||
@router.post("/score")
|
||||
@with_cancellation
|
||||
async def create_score(request: ScoreRequest, raw_request: Request):
|
||||
handler = score(raw_request)
|
||||
if handler is None:
|
||||
return base(raw_request).create_error_response(
|
||||
message="The model does not support Score API")
|
||||
|
||||
generator = await handler.create_score(request, raw_request)
|
||||
if isinstance(generator, ErrorResponse):
|
||||
return JSONResponse(content=generator.model_dump(),
|
||||
status_code=generator.code)
|
||||
elif isinstance(generator, ScoreResponse):
|
||||
return JSONResponse(content=generator.model_dump())
|
||||
|
||||
assert_never(generator)
|
||||
|
||||
|
||||
@router.post("/v1/score")
|
||||
@with_cancellation
|
||||
async def create_score_v1(request: ScoreRequest, raw_request: Request):
|
||||
logger.warning(
|
||||
"To indicate that Score API is not part of standard OpenAI API, we "
|
||||
"have moved it to `/score`. Please update your client accordingly.")
|
||||
|
||||
return await create_score(request, raw_request)
|
||||
|
||||
|
||||
if envs.VLLM_TORCH_PROFILER_DIR:
|
||||
logger.warning(
|
||||
"Torch Profiler is enabled in the API server. This should ONLY be "
|
||||
"used for local development!")
|
||||
|
||||
@router.post("/start_profile")
|
||||
async def start_profile(raw_request: Request):
|
||||
logger.info("Starting profiler...")
|
||||
await engine_client(raw_request).start_profile()
|
||||
logger.info("Profiler started.")
|
||||
return Response(status_code=200)
|
||||
|
||||
@router.post("/stop_profile")
|
||||
async def stop_profile(raw_request: Request):
|
||||
logger.info("Stopping profiler...")
|
||||
await engine_client(raw_request).stop_profile()
|
||||
logger.info("Profiler stopped.")
|
||||
return Response(status_code=200)
|
||||
|
||||
|
||||
if envs.VLLM_ALLOW_RUNTIME_LORA_UPDATING:
|
||||
logger.warning(
|
||||
"Lora dynamic loading & unloading is enabled in the API server. "
|
||||
"This should ONLY be used for local development!")
|
||||
|
||||
@router.post("/v1/load_lora_adapter")
|
||||
async def load_lora_adapter(request: LoadLoraAdapterRequest,
|
||||
raw_request: Request):
|
||||
for route in [chat, completion, embedding]:
|
||||
handler = route(raw_request)
|
||||
if handler is not None:
|
||||
response = await handler.load_lora_adapter(request)
|
||||
if isinstance(response, ErrorResponse):
|
||||
return JSONResponse(content=response.model_dump(),
|
||||
status_code=response.code)
|
||||
|
||||
return Response(status_code=200, content=response)
|
||||
|
||||
@router.post("/v1/unload_lora_adapter")
|
||||
async def unload_lora_adapter(request: UnloadLoraAdapterRequest,
|
||||
raw_request: Request):
|
||||
for route in [chat, completion, embedding]:
|
||||
handler = route(raw_request)
|
||||
if handler is not None:
|
||||
response = await handler.unload_lora_adapter(request)
|
||||
if isinstance(response, ErrorResponse):
|
||||
return JSONResponse(content=response.model_dump(),
|
||||
status_code=response.code)
|
||||
|
||||
return Response(status_code=200, content=response)
|
||||
|
||||
|
||||
def build_app(args: Namespace) -> FastAPI:
|
||||
if args.disable_fastapi_docs:
|
||||
app = FastAPI(openapi_url=None,
|
||||
docs_url=None,
|
||||
redoc_url=None,
|
||||
lifespan=lifespan)
|
||||
else:
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
app.include_router(router)
|
||||
app.root_path = args.root_path
|
||||
|
||||
mount_metrics(app)
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
|
|
@ -142,18 +563,43 @@ if __name__ == "__main__":
|
|||
allow_headers=args.allowed_headers,
|
||||
)
|
||||
|
||||
token = os.environ.get("VLLM_API_KEY") or args.api_key
|
||||
if token:
|
||||
@app.exception_handler(RequestValidationError)
|
||||
async def validation_exception_handler(_, exc):
|
||||
err = ErrorResponse(message=str(exc),
|
||||
type="BadRequestError",
|
||||
code=HTTPStatus.BAD_REQUEST)
|
||||
return JSONResponse(err.model_dump(),
|
||||
status_code=HTTPStatus.BAD_REQUEST)
|
||||
|
||||
if token := envs.VLLM_API_KEY or args.api_key:
|
||||
|
||||
@app.middleware("http")
|
||||
async def authentication(request: Request, call_next):
|
||||
root_path = "" if args.root_path is None else args.root_path
|
||||
if not request.url.path.startswith(f"{root_path}/v1"):
|
||||
if request.method == "OPTIONS":
|
||||
return await call_next(request)
|
||||
url_path = request.url.path
|
||||
if app.root_path and url_path.startswith(app.root_path):
|
||||
url_path = url_path[len(app.root_path):]
|
||||
if not url_path.startswith("/v1"):
|
||||
return await call_next(request)
|
||||
if request.headers.get("Authorization") != "Bearer " + token:
|
||||
return JSONResponse(content={"error": "Unauthorized"},
|
||||
status_code=401)
|
||||
return await call_next(request)
|
||||
|
||||
if args.enable_request_id_headers:
|
||||
logger.warning(
|
||||
"CAUTION: Enabling X-Request-Id headers in the API Server. "
|
||||
"This can harm performance at high QPS.")
|
||||
|
||||
@app.middleware("http")
|
||||
async def add_request_id(request: Request, call_next):
|
||||
request_id = request.headers.get(
|
||||
"X-Request-Id") or uuid.uuid4().hex
|
||||
response = await call_next(request)
|
||||
response.headers["X-Request-Id"] = request_id
|
||||
return response
|
||||
|
||||
for middleware in args.middleware:
|
||||
module_path, object_name = middleware.rsplit(".", 1)
|
||||
imported = getattr(importlib.import_module(module_path), object_name)
|
||||
|
|
@ -162,30 +608,145 @@ if __name__ == "__main__":
|
|||
elif inspect.iscoroutinefunction(imported):
|
||||
app.middleware("http")(imported)
|
||||
else:
|
||||
invalidInputError(False, (f"Invalid middleware {middleware}. "
|
||||
f"Must be a function or a class."))
|
||||
raise ValueError(f"Invalid middleware {middleware}. "
|
||||
f"Must be a function or a class.")
|
||||
|
||||
logger.info("vLLM API server version %s", vllm.__version__)
|
||||
logger.info("args: %s", args)
|
||||
return app
|
||||
|
||||
|
||||
def init_app_state(
|
||||
engine_client: EngineClient,
|
||||
model_config: ModelConfig,
|
||||
state: State,
|
||||
args: Namespace,
|
||||
) -> None:
|
||||
if args.served_model_name is not None:
|
||||
served_model_names = args.served_model_name
|
||||
else:
|
||||
served_model_names = [args.model]
|
||||
engine_args = AsyncEngineArgs.from_cli_args(args)
|
||||
engine = IPEXLLMAsyncLLMEngine.from_engine_args(
|
||||
engine_args, usage_context=UsageContext.OPENAI_API_SERVER,
|
||||
load_in_low_bit=args.load_in_low_bit,
|
||||
)
|
||||
openai_serving_chat = OpenAIServingChat(engine, served_model_names,
|
||||
args.response_role,
|
||||
args.lora_modules,
|
||||
args.chat_template)
|
||||
openai_serving_completion = OpenAIServingCompletion(
|
||||
engine, served_model_names, args.lora_modules)
|
||||
|
||||
app.root_path = args.root_path
|
||||
uvicorn.run(app,
|
||||
if args.disable_log_requests:
|
||||
request_logger = None
|
||||
else:
|
||||
request_logger = RequestLogger(max_log_len=args.max_log_len)
|
||||
|
||||
base_model_paths = [
|
||||
BaseModelPath(name=name, model_path=args.model)
|
||||
for name in served_model_names
|
||||
]
|
||||
|
||||
state.engine_client = engine_client
|
||||
state.log_stats = not args.disable_log_stats
|
||||
|
||||
resolved_chat_template = load_chat_template(args.chat_template)
|
||||
logger.info("Using supplied chat template:\n%s", resolved_chat_template)
|
||||
|
||||
state.openai_serving_chat = OpenAIServingChat(
|
||||
engine_client,
|
||||
model_config,
|
||||
base_model_paths,
|
||||
args.response_role,
|
||||
lora_modules=args.lora_modules,
|
||||
prompt_adapters=args.prompt_adapters,
|
||||
request_logger=request_logger,
|
||||
chat_template=resolved_chat_template,
|
||||
chat_template_content_format=args.chat_template_content_format,
|
||||
return_tokens_as_token_ids=args.return_tokens_as_token_ids,
|
||||
enable_auto_tools=args.enable_auto_tool_choice,
|
||||
tool_parser=args.tool_call_parser,
|
||||
enable_prompt_tokens_details=args.enable_prompt_tokens_details,
|
||||
) if model_config.runner_type == "generate" else None
|
||||
state.openai_serving_completion = OpenAIServingCompletion(
|
||||
engine_client,
|
||||
model_config,
|
||||
base_model_paths,
|
||||
lora_modules=args.lora_modules,
|
||||
prompt_adapters=args.prompt_adapters,
|
||||
request_logger=request_logger,
|
||||
return_tokens_as_token_ids=args.return_tokens_as_token_ids,
|
||||
) if model_config.runner_type == "generate" else None
|
||||
state.openai_serving_pooling = OpenAIServingPooling(
|
||||
engine_client,
|
||||
model_config,
|
||||
base_model_paths,
|
||||
request_logger=request_logger,
|
||||
chat_template=resolved_chat_template,
|
||||
chat_template_content_format=args.chat_template_content_format,
|
||||
) if model_config.runner_type == "pooling" else None
|
||||
state.openai_serving_embedding = OpenAIServingEmbedding(
|
||||
engine_client,
|
||||
model_config,
|
||||
base_model_paths,
|
||||
request_logger=request_logger,
|
||||
chat_template=resolved_chat_template,
|
||||
chat_template_content_format=args.chat_template_content_format,
|
||||
) if model_config.task == "embed" else None
|
||||
state.openai_serving_scores = OpenAIServingScores(
|
||||
engine_client,
|
||||
model_config,
|
||||
base_model_paths,
|
||||
request_logger=request_logger
|
||||
) if model_config.task == "score" else None
|
||||
state.openai_serving_tokenization = OpenAIServingTokenization(
|
||||
engine_client,
|
||||
model_config,
|
||||
base_model_paths,
|
||||
lora_modules=args.lora_modules,
|
||||
request_logger=request_logger,
|
||||
chat_template=resolved_chat_template,
|
||||
chat_template_content_format=args.chat_template_content_format,
|
||||
)
|
||||
|
||||
|
||||
def create_server_socket(addr: Tuple[str, int]) -> socket.socket:
|
||||
family = socket.AF_INET
|
||||
if is_valid_ipv6_address(addr[0]):
|
||||
family = socket.AF_INET6
|
||||
|
||||
sock = socket.socket(family=family, type=socket.SOCK_STREAM)
|
||||
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
||||
sock.bind(addr)
|
||||
|
||||
return sock
|
||||
|
||||
|
||||
async def run_server(args, **uvicorn_kwargs) -> None:
|
||||
logger.info("vLLM API server version %s", VLLM_VERSION)
|
||||
logger.info("args: %s", args)
|
||||
|
||||
if args.tool_parser_plugin and len(args.tool_parser_plugin) > 3:
|
||||
ToolParserManager.import_tool_parser(args.tool_parser_plugin)
|
||||
|
||||
valide_tool_parses = ToolParserManager.tool_parsers.keys()
|
||||
if args.enable_auto_tool_choice \
|
||||
and args.tool_call_parser not in valide_tool_parses:
|
||||
raise KeyError(f"invalid tool call parser: {args.tool_call_parser} "
|
||||
f"(chose from {{ {','.join(valide_tool_parses)} }})")
|
||||
|
||||
# workaround to make sure that we bind the port before the engine is set up.
|
||||
# This avoids race conditions with ray.
|
||||
# see https://github.com/vllm-project/vllm/issues/8204
|
||||
sock_addr = (args.host or "", args.port)
|
||||
sock = create_server_socket(sock_addr)
|
||||
|
||||
# workaround to avoid footguns where uvicorn drops requests with too
|
||||
# many concurrent requests active
|
||||
set_ulimit()
|
||||
|
||||
def signal_handler(*_) -> None:
|
||||
# Interrupt server on sigterm while initializing
|
||||
raise KeyboardInterrupt("terminated")
|
||||
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
async with build_async_engine_client(args) as engine_client:
|
||||
app = build_app(args)
|
||||
|
||||
model_config = await engine_client.get_model_config()
|
||||
init_app_state(engine_client, model_config, app.state, args)
|
||||
|
||||
shutdown_task = await serve_http(
|
||||
app,
|
||||
host=args.host,
|
||||
port=args.port,
|
||||
log_level=args.uvicorn_log_level,
|
||||
|
|
@ -193,4 +754,28 @@ if __name__ == "__main__":
|
|||
ssl_keyfile=args.ssl_keyfile,
|
||||
ssl_certfile=args.ssl_certfile,
|
||||
ssl_ca_certs=args.ssl_ca_certs,
|
||||
ssl_cert_reqs=args.ssl_cert_reqs)
|
||||
ssl_cert_reqs=args.ssl_cert_reqs,
|
||||
**uvicorn_kwargs,
|
||||
)
|
||||
|
||||
# NB: Await server shutdown only after the backend context is exited
|
||||
await shutdown_task
|
||||
|
||||
sock.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# NOTE(simon):
|
||||
# This section should be in sync with vllm/scripts.py for CLI entrypoints.
|
||||
parser = FlexibleArgumentParser(
|
||||
description="vLLM OpenAI-Compatible RESTful API server.")
|
||||
parser = make_arg_parser(parser)
|
||||
parser.add_argument(
|
||||
"--load-in-low-bit",
|
||||
type=str,
|
||||
default="sym_int4",
|
||||
help="Low-bit quantization for IPEX-LLM models")
|
||||
args = parser.parse_args()
|
||||
validate_parsed_serve_args(args)
|
||||
|
||||
uvloop.run(run_server(args))
|
||||
|
|
|
|||
277
python/llm/src/ipex_llm/vllm/cpu/entrypoints/openai/cli_args.py
Normal file
277
python/llm/src/ipex_llm/vllm/cpu/entrypoints/openai/cli_args.py
Normal file
|
|
@ -0,0 +1,277 @@
|
|||
"""
|
||||
This file contains the command line arguments for the vLLM's
|
||||
OpenAI-compatible server. It is kept in a separate file for documentation
|
||||
purposes.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import ssl
|
||||
from typing import List, Optional, Sequence, Union, get_args
|
||||
|
||||
from vllm.engine.arg_utils import AsyncEngineArgs, nullable_str
|
||||
from vllm.entrypoints.chat_utils import (ChatTemplateContentFormatOption,
|
||||
validate_chat_template)
|
||||
from vllm.entrypoints.openai.serving_engine import (LoRAModulePath,
|
||||
PromptAdapterPath)
|
||||
from vllm.entrypoints.openai.tool_parsers import ToolParserManager
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
|
||||
class LoRAParserAction(argparse.Action):
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
parser: argparse.ArgumentParser,
|
||||
namespace: argparse.Namespace,
|
||||
values: Optional[Union[str, Sequence[str]]],
|
||||
option_string: Optional[str] = None,
|
||||
):
|
||||
if values is None:
|
||||
values = []
|
||||
if isinstance(values, str):
|
||||
raise TypeError("Expected values to be a list") # noqa
|
||||
|
||||
lora_list: List[LoRAModulePath] = []
|
||||
for item in values:
|
||||
if item in [None, '']: # Skip if item is None or empty string
|
||||
continue
|
||||
if '=' in item and ',' not in item: # Old format: name=path
|
||||
name, path = item.split('=')
|
||||
lora_list.append(LoRAModulePath(name, path))
|
||||
else: # Assume JSON format
|
||||
try:
|
||||
lora_dict = json.loads(item)
|
||||
lora = LoRAModulePath(**lora_dict)
|
||||
lora_list.append(lora)
|
||||
except json.JSONDecodeError:
|
||||
parser.error(
|
||||
f"Invalid JSON format for --lora-modules: {item}")
|
||||
except TypeError as e:
|
||||
parser.error(
|
||||
f"Invalid fields for --lora-modules: {item} - {str(e)}"
|
||||
)
|
||||
setattr(namespace, self.dest, lora_list)
|
||||
|
||||
|
||||
class PromptAdapterParserAction(argparse.Action):
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
parser: argparse.ArgumentParser,
|
||||
namespace: argparse.Namespace,
|
||||
values: Optional[Union[str, Sequence[str]]],
|
||||
option_string: Optional[str] = None,
|
||||
):
|
||||
if values is None:
|
||||
values = []
|
||||
if isinstance(values, str):
|
||||
raise TypeError("Expected values to be a list") # noqa
|
||||
|
||||
adapter_list: List[PromptAdapterPath] = []
|
||||
for item in values:
|
||||
name, path = item.split('=')
|
||||
adapter_list.append(PromptAdapterPath(name, path))
|
||||
setattr(namespace, self.dest, adapter_list)
|
||||
|
||||
|
||||
def make_arg_parser(parser: FlexibleArgumentParser) -> FlexibleArgumentParser:
|
||||
parser.add_argument("--host",
|
||||
type=nullable_str,
|
||||
default=None,
|
||||
help="host name")
|
||||
parser.add_argument("--port", type=int, default=8000, help="port number")
|
||||
parser.add_argument(
|
||||
"--uvicorn-log-level",
|
||||
type=str,
|
||||
default="info",
|
||||
choices=['debug', 'info', 'warning', 'error', 'critical', 'trace'],
|
||||
help="log level for uvicorn")
|
||||
parser.add_argument("--allow-credentials",
|
||||
action="store_true",
|
||||
help="allow credentials")
|
||||
parser.add_argument("--allowed-origins",
|
||||
type=json.loads,
|
||||
default=["*"],
|
||||
help="allowed origins")
|
||||
parser.add_argument("--allowed-methods",
|
||||
type=json.loads,
|
||||
default=["*"],
|
||||
help="allowed methods")
|
||||
parser.add_argument("--allowed-headers",
|
||||
type=json.loads,
|
||||
default=["*"],
|
||||
help="allowed headers")
|
||||
parser.add_argument("--api-key",
|
||||
type=nullable_str,
|
||||
default=None,
|
||||
help="If provided, the server will require this key "
|
||||
"to be presented in the header.")
|
||||
parser.add_argument(
|
||||
"--lora-modules",
|
||||
type=nullable_str,
|
||||
default=None,
|
||||
nargs='+',
|
||||
action=LoRAParserAction,
|
||||
help="LoRA module configurations in either 'name=path' format"
|
||||
"or JSON format. "
|
||||
"Example (old format): 'name=path' "
|
||||
"Example (new format): "
|
||||
"'{\"name\": \"name\", \"local_path\": \"path\", "
|
||||
"\"base_model_name\": \"id\"}'")
|
||||
parser.add_argument(
|
||||
"--prompt-adapters",
|
||||
type=nullable_str,
|
||||
default=None,
|
||||
nargs='+',
|
||||
action=PromptAdapterParserAction,
|
||||
help="Prompt adapter configurations in the format name=path. "
|
||||
"Multiple adapters can be specified.")
|
||||
parser.add_argument("--chat-template",
|
||||
type=nullable_str,
|
||||
default=None,
|
||||
help="The file path to the chat template, "
|
||||
"or the template in single-line form "
|
||||
"for the specified model")
|
||||
parser.add_argument(
|
||||
'--chat-template-content-format',
|
||||
type=str,
|
||||
default="auto",
|
||||
choices=get_args(ChatTemplateContentFormatOption),
|
||||
help='The format to render message content within a chat template.'
|
||||
'\n\n'
|
||||
'* "string" will render the content as a string. '
|
||||
'Example: "Hello World"\n'
|
||||
'* "openai" will render the content as a list of dictionaries, '
|
||||
'similar to OpenAI schema. '
|
||||
'Example: [{"type": "text", "text": "Hello world!"}]')
|
||||
parser.add_argument("--response-role",
|
||||
type=nullable_str,
|
||||
default="assistant",
|
||||
help="The role name to return if "
|
||||
"`request.add_generation_prompt=true`.")
|
||||
parser.add_argument("--ssl-keyfile",
|
||||
type=nullable_str,
|
||||
default=None,
|
||||
help="The file path to the SSL key file")
|
||||
parser.add_argument("--ssl-certfile",
|
||||
type=nullable_str,
|
||||
default=None,
|
||||
help="The file path to the SSL cert file")
|
||||
parser.add_argument("--ssl-ca-certs",
|
||||
type=nullable_str,
|
||||
default=None,
|
||||
help="The CA certificates file")
|
||||
parser.add_argument(
|
||||
"--ssl-cert-reqs",
|
||||
type=int,
|
||||
default=int(ssl.CERT_NONE),
|
||||
help="Whether client certificate is required (see stdlib ssl module's)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--root-path",
|
||||
type=nullable_str,
|
||||
default=None,
|
||||
help="FastAPI root_path when app is behind a path based routing proxy")
|
||||
parser.add_argument(
|
||||
"--middleware",
|
||||
type=nullable_str,
|
||||
action="append",
|
||||
default=[],
|
||||
help="Additional ASGI middleware to apply to the app. "
|
||||
"We accept multiple --middleware arguments. "
|
||||
"The value should be an import path. "
|
||||
"If a function is provided, vLLM will add it to the server "
|
||||
"using @app.middleware('http'). "
|
||||
"If a class is provided, vLLM will add it to the server "
|
||||
"using app.add_middleware(). ")
|
||||
parser.add_argument(
|
||||
"--return-tokens-as-token-ids",
|
||||
action="store_true",
|
||||
help="When --max-logprobs is specified, represents single tokens as "
|
||||
"strings of the form 'token_id:{token_id}' so that tokens that "
|
||||
"are not JSON-encodable can be identified.")
|
||||
parser.add_argument(
|
||||
"--disable-frontend-multiprocessing",
|
||||
action="store_true",
|
||||
help="If specified, will run the OpenAI frontend server in the same "
|
||||
"process as the model serving engine.")
|
||||
parser.add_argument(
|
||||
"--enable-request-id-headers",
|
||||
action="store_true",
|
||||
help="If specified, API server will add X-Request-Id header to "
|
||||
"responses. Caution: this hurts performance at high QPS.")
|
||||
parser.add_argument(
|
||||
"--enable-auto-tool-choice",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Enable auto tool choice for supported models. Use --tool-call-parser"
|
||||
" to specify which parser to use")
|
||||
|
||||
valid_tool_parsers = ToolParserManager.tool_parsers.keys()
|
||||
parser.add_argument(
|
||||
"--tool-call-parser",
|
||||
type=str,
|
||||
metavar="{" + ",".join(valid_tool_parsers) + "} or name registered in "
|
||||
"--tool-parser-plugin",
|
||||
default=None,
|
||||
help="Select the tool call parser depending on the model that you're using."
|
||||
" This is used to parse the model-generated tool call into OpenAI API "
|
||||
"format. Required for --enable-auto-tool-choice.")
|
||||
|
||||
parser.add_argument(
|
||||
"--tool-parser-plugin",
|
||||
type=str,
|
||||
default="",
|
||||
help="Special the tool parser plugin write to parse the model-generated tool"
|
||||
" into OpenAI API format, the name register in this plugin can be used "
|
||||
"in --tool-call-parser.")
|
||||
|
||||
parser = AsyncEngineArgs.add_cli_args(parser)
|
||||
|
||||
parser.add_argument('--max-log-len',
|
||||
type=int,
|
||||
default=None,
|
||||
help='Max number of prompt characters or prompt '
|
||||
'ID numbers being printed in log.'
|
||||
'\n\nDefault: Unlimited')
|
||||
|
||||
parser.add_argument(
|
||||
"--disable-fastapi-docs",
|
||||
action='store_true',
|
||||
default=False,
|
||||
help="Disable FastAPI's OpenAPI schema, Swagger UI, and ReDoc endpoint"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--enable-prompt-tokens-details",
|
||||
action='store_true',
|
||||
default=False,
|
||||
help="If set to True, enable prompt_tokens_details in usage.")
|
||||
|
||||
parser.add_argument(
|
||||
"--load-in-low-bit",
|
||||
type=str,
|
||||
default="sym_int4",
|
||||
help="Low-bit quantization for IPEX-LLM models")
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def validate_parsed_serve_args(args: argparse.Namespace):
|
||||
"""Quick checks for model serve args that raise prior to loading.""" # noqa
|
||||
if hasattr(args, "subparser") and args.subparser != "serve":
|
||||
return
|
||||
|
||||
# Ensure that the chat template is valid; raises if it likely isn't
|
||||
validate_chat_template(args.chat_template)
|
||||
|
||||
# Enable auto tool needs a tool call parser to be valid
|
||||
if args.enable_auto_tool_choice and not args.tool_call_parser:
|
||||
raise TypeError("Error: --enable-auto-tool-choice requires " # noqa
|
||||
"--tool-call-parser")
|
||||
|
||||
|
||||
def create_parser_for_docs() -> FlexibleArgumentParser:
|
||||
parser_for_docs = FlexibleArgumentParser(
|
||||
prog="-m vllm.entrypoints.openai.api_server")
|
||||
return make_arg_parser(parser_for_docs)
|
||||
23
python/llm/src/ipex_llm/vllm/cpu/ipex_llm_v1_wrapper.py
Normal file
23
python/llm/src/ipex_llm/vllm/cpu/ipex_llm_v1_wrapper.py
Normal file
|
|
@ -0,0 +1,23 @@
|
|||
from vllm.logger import init_logger
|
||||
from vllm.v1.executor.ray_utils import RayWorkerWrapper
|
||||
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
|
||||
class IPEXLLMV1Wrapper(RayWorkerWrapper):
|
||||
def __init__(self, load_in_low_bit="sym_int4", *args, **kwargs) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
from ipex_llm.vllm.cpu.model_convert import _ipex_llm_convert
|
||||
_ipex_llm_convert(load_in_low_bit=load_in_low_bit)
|
||||
self.compiled_dag_cuda_device_set = False
|
||||
|
||||
|
||||
def get_ipex_llm_v1_wrapper(load_in_low_bit):
|
||||
# The reason why we not using functools.partial is that
|
||||
# ray seems not work well with it.
|
||||
class WrapperWithLoadBit(IPEXLLMV1Wrapper):
|
||||
def __init__(self, *args, **kwargs) -> None:
|
||||
super().__init__(load_in_low_bit=load_in_low_bit, *args, **kwargs)
|
||||
|
||||
return WrapperWithLoadBit
|
||||
24
python/llm/src/ipex_llm/vllm/cpu/ipex_llm_wrapper.py
Normal file
24
python/llm/src/ipex_llm/vllm/cpu/ipex_llm_wrapper.py
Normal file
|
|
@ -0,0 +1,24 @@
|
|||
from vllm.logger import init_logger
|
||||
from vllm.executor.ray_utils import RayWorkerWrapper
|
||||
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
|
||||
class IPEXLLMWrapper(RayWorkerWrapper):
|
||||
def __init__(self, load_in_low_bit="sym_int4", *args, **kwargs) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
from ipex_llm.vllm.cpu.model_convert import _ipex_llm_convert
|
||||
_ipex_llm_convert(load_in_low_bit=load_in_low_bit)
|
||||
self.compiled_dag_cuda_device_set = False
|
||||
|
||||
|
||||
def get_ipex_llm_wrapper(load_in_low_bit):
|
||||
# The reason why we not using functools.partial is that
|
||||
# ray seems not work well with it.
|
||||
class WrapperWithLoadBit(IPEXLLMWrapper):
|
||||
def __init__(self, *args, **kwargs) -> None:
|
||||
super().__init__(load_in_low_bit=load_in_low_bit, *args, **kwargs)
|
||||
|
||||
# a = functools.partial(IPEXLLMWrapper, load_in_low_bit=load_in_low_bit)
|
||||
return WrapperWithLoadBit
|
||||
|
|
@ -14,259 +14,152 @@
|
|||
# limitations under the License.
|
||||
#
|
||||
import torch
|
||||
from typing import Optional, Union
|
||||
from vllm.distributed import tensor_model_parallel_gather, tensor_model_parallel_all_gather
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor.model_loader import get_model
|
||||
from vllm.model_executor.model_loader.utils import get_model_architecture
|
||||
from vllm.model_executor.models.llama import LlamaMLP, LlamaAttention
|
||||
from vllm.model_executor.models.qwen2 import Qwen2MLP, Qwen2Attention
|
||||
from vllm.model_executor.models.qwen import QWenMLP, QWenAttention
|
||||
from vllm.model_executor.models.llama import LlamaMLP, LlamaAttention, LlamaForCausalLM
|
||||
from vllm.model_executor.models.qwen2 import Qwen2MLP, Qwen2Attention, Qwen2ForCausalLM
|
||||
from vllm.model_executor.models.qwen import QWenMLP, QWenAttention, QWenLMHeadModel
|
||||
from vllm.model_executor.models.baichuan import BaiChuanMLP, BaiChuanAttention
|
||||
from vllm.model_executor.models.chatglm import GLMMLP, GLMAttention
|
||||
from vllm.attention import Attention, AttentionMetadata
|
||||
from vllm.lora.worker_manager import LRUCacheWorkerLoRAManager
|
||||
from vllm.model_executor.models.baichuan import BaiChuanBaseForCausalLM
|
||||
from vllm.model_executor.models.chatglm import GLMMLP, GLMAttention, ChatGLMForCausalLM
|
||||
from vllm.model_executor.model_loader import get_model
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding)
|
||||
from vllm.attention import AttentionMetadata
|
||||
from vllm.config import DeviceConfig
|
||||
from vllm.logger import init_logger
|
||||
|
||||
from vllm._C import ops
|
||||
from ipex_llm.utils.common import invalidInputError
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
logger = init_logger(__name__)
|
||||
from typing import Tuple
|
||||
from ipex_llm.transformers.low_bit_linear import LowBitLinear
|
||||
|
||||
|
||||
def _MLP_forward(self, x):
|
||||
gate_up = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x = self.down_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
def _Attention_forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
qkv = self.qkv_proj(hidden_states).to(dtype=kv_cache.dtype)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
attn_output = self.attn(q, k, v, kv_cache, attn_metadata, self.kv_scale)
|
||||
output = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
def _QWen_Attention_forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: Tuple[torch.Tensor, torch.Tensor],
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
qkv = self.c_attn(hidden_states).to(dtype=kv_cache.dtype)
|
||||
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
||||
output = self.c_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
def _QWen_MLP_forward(self, x):
|
||||
gate_up = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x = self.c_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
def _Qwen2_Attention_forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
qkv = self.qkv_proj(hidden_states).to(dtype=kv_cache.dtype)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
||||
output = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
def _ChatGLM_MLP_forward(self, hidden_states):
|
||||
# [s, b, 4hp]
|
||||
intermediate_parallel = self.dense_h_to_4h(hidden_states)
|
||||
intermediate_parallel = self.activation_func(intermediate_parallel)
|
||||
# [s, b, h]
|
||||
output = self.dense_4h_to_h(intermediate_parallel)
|
||||
return output
|
||||
|
||||
|
||||
def _Baichuan_Attention_forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: Tuple[torch.Tensor, torch.Tensor],
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
qkv = self.W_pack(hidden_states).to(dtype=kv_cache.dtype)
|
||||
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
||||
if self.postion_embedding != "ALIBI":
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
||||
output = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
def _ChatGLM_Attention_forward(
|
||||
def _sample_get_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
kv_cache: Tuple[torch.Tensor, torch.Tensor],
|
||||
attn_metadata: AttentionMetadata,
|
||||
lm_head: Union[VocabParallelEmbedding, LowBitLinear],
|
||||
embedding_bias: Optional[torch.Tensor],
|
||||
) -> torch.Tensor:
|
||||
qkv = self.query_key_value(hidden_states).to(dtype=kv_cache.dtype)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
q, k = self.rotary_emb(position_ids, q, k)
|
||||
context_layer = self.attn(
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
kv_cache,
|
||||
attn_metadata,
|
||||
)
|
||||
attn_output = self.dense(context_layer)
|
||||
return attn_output
|
||||
|
||||
_REPLACED_MLP_LAYERS = {
|
||||
LlamaMLP: _MLP_forward,
|
||||
Qwen2MLP: _MLP_forward,
|
||||
BaiChuanMLP: _MLP_forward,
|
||||
# QWenMLP: _QWen_MLP_forward,
|
||||
GLMMLP: _ChatGLM_MLP_forward
|
||||
}
|
||||
|
||||
_REPLACED_ATTENTION_LAYERS = {
|
||||
LlamaAttention: _Attention_forward,
|
||||
Qwen2Attention: _Qwen2_Attention_forward,
|
||||
# QWenAttention: _QWen_Attention_forward,
|
||||
BaiChuanAttention: _Baichuan_Attention_forward,
|
||||
GLMAttention: _ChatGLM_Attention_forward
|
||||
}
|
||||
|
||||
_IPEX_LLM_SUPPORTED_MODELS = [
|
||||
"LlamaForCausalLM",
|
||||
"BaichuanForCausalLM",
|
||||
"ChatGLMForCausalLM",
|
||||
"Qwen2ForCausalLM",
|
||||
]
|
||||
# HINT: we do not support other types of quantization for now
|
||||
# TODO: we may encounter tie-word-embedding problems
|
||||
if isinstance(lm_head, VocabParallelEmbedding):
|
||||
logits = lm_head.linear_method.apply(lm_head,
|
||||
hidden_states,
|
||||
bias=embedding_bias)
|
||||
else:
|
||||
logits = lm_head(hidden_states)
|
||||
if embedding_bias is not None:
|
||||
logits += embedding_bias
|
||||
if self.use_gather:
|
||||
logits = tensor_model_parallel_gather(logits)
|
||||
else:
|
||||
logits = tensor_model_parallel_all_gather(logits)
|
||||
if logits is not None:
|
||||
logits = logits[:, : self.org_vocab_size]
|
||||
return logits
|
||||
|
||||
|
||||
def _model_mlp_convert():
|
||||
for module, replaced_func in _REPLACED_MLP_LAYERS.items():
|
||||
setattr(module, "forward", replaced_func)
|
||||
|
||||
|
||||
def _model_attention_convert():
|
||||
for module, replaced_func in _REPLACED_ATTENTION_LAYERS.items():
|
||||
setattr(module, "forward", replaced_func)
|
||||
def _model_sample_convert():
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
setattr(LogitsProcessor, "_get_logits", _sample_get_logits)
|
||||
|
||||
|
||||
def _ipex_llm_convert(load_in_low_bit):
|
||||
if load_in_low_bit is None:
|
||||
return
|
||||
from vllm.worker.cpu_model_runner import CPUModelRunner
|
||||
import vllm.model_executor.model_loader as model_loader
|
||||
from ipex_llm.vllm.cpu.ipex_llm_wrapper import get_ipex_llm_wrapper
|
||||
from ipex_llm.vllm.cpu.ipex_llm_v1_wrapper import get_ipex_llm_v1_wrapper
|
||||
import vllm.executor.ray_utils as ray_utils_v0
|
||||
import vllm.v1.executor.ray_utils as ray_utils_v1
|
||||
setattr(CPUModelRunner, "load_model", get_load_function(load_in_low_bit))
|
||||
|
||||
from vllm.model_executor.layers.rotary_embedding import RotaryEmbedding
|
||||
setattr(RotaryEmbedding, "forward", _ipex_llm_rotary_embedding_forward)
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
setattr(RMSNorm, "forward", _ipex_llm_rmsnorm_forward)
|
||||
|
||||
|
||||
def _ipex_llm_rotary_embedding_forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
query: torch.Tensor,
|
||||
key: torch.Tensor,
|
||||
offsets: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
self.cos_sin_cache = self.cos_sin_cache.to(positions.device, dtype=query.dtype)
|
||||
|
||||
# ops.rotary_embedding()/batched_rotary_embedding()
|
||||
# are in-place operations that update the query and key tensors.
|
||||
if offsets is not None:
|
||||
ops.batched_rotary_embedding(positions, query, key, self.head_size,
|
||||
self.cos_sin_cache,
|
||||
self.is_neox_style, self.rotary_dim,
|
||||
offsets)
|
||||
else:
|
||||
ops.rotary_embedding(positions, query, key, self.head_size,
|
||||
self.cos_sin_cache, self.is_neox_style)
|
||||
return query, key
|
||||
|
||||
|
||||
def _ipex_llm_rmsnorm_forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
residual: Optional[torch.Tensor] = None,
|
||||
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
||||
x = x.to(dtype=self.weight.data.dtype)
|
||||
if residual is not None:
|
||||
residual = residual.to(dtype=self.weight.data.dtype)
|
||||
ops.fused_add_rms_norm(
|
||||
x,
|
||||
residual,
|
||||
self.weight.data,
|
||||
self.variance_epsilon,
|
||||
)
|
||||
return x, residual
|
||||
out = torch.empty_like(x)
|
||||
ops.rms_norm(
|
||||
out,
|
||||
x,
|
||||
self.weight.data,
|
||||
self.variance_epsilon,
|
||||
)
|
||||
return out
|
||||
setattr(ray_utils_v0, "RayWorkerWrapper", get_ipex_llm_wrapper(load_in_low_bit))
|
||||
setattr(ray_utils_v1, "RayWorkerWrapper", get_ipex_llm_v1_wrapper(load_in_low_bit))
|
||||
|
||||
|
||||
def get_load_function(low_bit):
|
||||
def _ipex_llm_load_model(self) -> None:
|
||||
model_class = get_model_architecture(self.model_config)[1]
|
||||
cur_model_list = ", ".join(_IPEX_LLM_SUPPORTED_MODELS)
|
||||
if low_bit != "bf16":
|
||||
invalidInputError(model_class in _IPEX_LLM_SUPPORTED_MODELS,
|
||||
f"Currently IPEX-LLM vLLM convert only support {cur_model_list}.")
|
||||
else:
|
||||
if model_class not in _IPEX_LLM_SUPPORTED_MODELS:
|
||||
logger.warning(
|
||||
f"Currently IPEX-LLM vLLM convert only support {cur_model_list}."
|
||||
_model_sample_convert()
|
||||
|
||||
# from vllm.utils import measure_device_memory
|
||||
# from vllm.utils import DeviceMemoryProfiler
|
||||
# with DeviceMemoryProfiler() as m:
|
||||
from dataclasses import replace
|
||||
new_device_config = DeviceConfig("cpu")
|
||||
new_vllm_config = replace(self.vllm_config, device_config=new_device_config)
|
||||
self.model = get_model(
|
||||
vllm_config=new_vllm_config
|
||||
)
|
||||
self.model = get_model(
|
||||
model_config=self.model_config,
|
||||
load_config=self.load_config,
|
||||
device_config=self.device_config,
|
||||
vision_language_config=self.vision_language_config,
|
||||
lora_config=self.lora_config,
|
||||
parallel_config=self.parallel_config,
|
||||
scheduler_config=self.scheduler_config)
|
||||
return
|
||||
|
||||
# _model_mlp_convert()
|
||||
# _model_attention_convert()
|
||||
|
||||
self.model = get_model(
|
||||
model_config=self.model_config,
|
||||
load_config=self.load_config,
|
||||
device_config=self.device_config,
|
||||
vision_language_config=self.vision_language_config,
|
||||
lora_config=self.lora_config,
|
||||
parallel_config=self.parallel_config,
|
||||
scheduler_config=self.scheduler_config)
|
||||
|
||||
if "qwen" in self.vllm_config.model_config.model.lower() or \
|
||||
"baichuan" in self.vllm_config.model_config.model.lower() or \
|
||||
"codegeex4-all" in self.vllm_config.model_config.model.lower() or \
|
||||
"chatglm" in self.vllm_config.model_config.model.lower():
|
||||
self.model.apply(padding_mlp)
|
||||
from ipex_llm import optimize_model
|
||||
optimize_model(self.model, low_bit=low_bit, torch_dtype=self.model_config.dtype)
|
||||
import os
|
||||
not_convert_last_mlp = os.getenv("IPEX_LLM_NOT_CONVERT_LAST_MLP", None)
|
||||
if not_convert_last_mlp is not None:
|
||||
# only use to avoid nan value in last mlp forward running glm4-9b-chat
|
||||
modules = ["35.mlp", "36.mlp", "37.mlp", "38.mlp", "39.mlp"]
|
||||
else:
|
||||
modules = None
|
||||
if "minicpm" in self.vllm_config.model_config.model.lower():
|
||||
modules = ["vpm", "resampler"]
|
||||
# only for minicpm_2_6
|
||||
if "minicpm-v" in self.vllm_config.model_config.model.lower():
|
||||
from ipex_llm.transformers.models.minicpmv import merge_qkv
|
||||
self.model.vpm.apply(merge_qkv)
|
||||
if "internvl2" in self.vllm_config.model_config.model.lower():
|
||||
modules = ["vision_model", "mlp1"]
|
||||
|
||||
# print(self.vllm_config.model_config.dtype)
|
||||
# print("---------------------------------------")
|
||||
optimize_model(self.model, low_bit=low_bit, torch_dtype=self.vllm_config.model_config.dtype,
|
||||
modules_to_not_convert=modules)
|
||||
self.model = self.model.to(device=self.vllm_config.device_config.device,
|
||||
dtype=self.vllm_config.model_config.dtype)
|
||||
# print(self.model)
|
||||
# self.model_memory_usage = m.consumed_memory
|
||||
# logger = init_logger(__name__)
|
||||
# logger.info("Loading model weights took %.4f GB",
|
||||
# self.model_memory_usage / float(2**30))
|
||||
|
||||
return _ipex_llm_load_model
|
||||
|
||||
|
||||
def padding_mlp(module: torch.nn.Module):
|
||||
mlp_gate_up_name = None
|
||||
mlp_down_name = None
|
||||
if isinstance(module, Qwen2MLP):
|
||||
mlp_gate_up_name = "gate_up_proj"
|
||||
mlp_down_name = "down_proj"
|
||||
elif isinstance(module, GLMMLP):
|
||||
mlp_gate_up_name = "dense_h_to_4h"
|
||||
mlp_down_name = "dense_4h_to_h"
|
||||
elif isinstance(module, BaiChuanMLP):
|
||||
mlp_gate_up_name = "gate_up_proj"
|
||||
mlp_down_name = "down_proj"
|
||||
else:
|
||||
return
|
||||
hidden_size = getattr(module, mlp_down_name).output_size
|
||||
# devide by rank
|
||||
intermediate_size = getattr(module, mlp_down_name).input_size_per_partition
|
||||
padding_size = 256
|
||||
padding_intermediate_size = \
|
||||
(intermediate_size + padding_size - 1) // padding_size * padding_size
|
||||
if intermediate_size % padding_size == 0:
|
||||
return
|
||||
gate_up_weight = getattr(module, mlp_gate_up_name).weight.data
|
||||
new_gate_up_weight = torch.zeros([padding_intermediate_size * 2, hidden_size],
|
||||
dtype=gate_up_weight.dtype, device=gate_up_weight.device)
|
||||
# merge_gate_up_weight
|
||||
new_gate_up_weight[:intermediate_size, :] = gate_up_weight[:intermediate_size, :]
|
||||
new_gate_up_weight[padding_intermediate_size:padding_intermediate_size+intermediate_size, :] = gate_up_weight[intermediate_size:, :] # noqa
|
||||
getattr(module, mlp_gate_up_name).output_size_per_partition = padding_intermediate_size * 2
|
||||
getattr(module, mlp_gate_up_name).output_size = padding_intermediate_size * 2
|
||||
getattr(module, mlp_gate_up_name).weight = \
|
||||
torch.nn.Parameter(new_gate_up_weight, requires_grad=False)
|
||||
|
||||
down_weight = getattr(module, mlp_down_name).weight.data
|
||||
new_down_weight = torch.zeros([hidden_size, padding_intermediate_size],
|
||||
dtype=down_weight.dtype, device=down_weight.device)
|
||||
new_down_weight[:, :intermediate_size] = down_weight
|
||||
getattr(module, mlp_down_name).input_size_per_partition = padding_intermediate_size
|
||||
getattr(module, mlp_down_name).input_size = padding_intermediate_size
|
||||
getattr(module, mlp_down_name).weight = torch.nn.Parameter(new_down_weight, requires_grad=False)
|
||||
|
|
|
|||
Loading…
Reference in a new issue