vLLM: Update vLLM-cpu to v0.6.6-post1 (#12728)
Update vLLM-cpu to v0.6.6-post1
This commit is contained in:
		
							parent
							
								
									78cca0a68c
								
							
						
					
					
						commit
						c9b6c94a59
					
				
					 11 changed files with 2086 additions and 410 deletions
				
			
		| 
						 | 
				
			
			@ -16,6 +16,8 @@ RUN wget -qO /sbin/tini https://github.com/krallin/tini/releases/download/${TINI
 | 
			
		|||
    apt-get update && \
 | 
			
		||||
    apt-get install -y --no-install-recommends wrk patch g++ && \
 | 
			
		||||
    pip install --pre --upgrade ipex-llm[serving] && \
 | 
			
		||||
    apt-get install -y gcc-12 g++-12 libnuma-dev && \
 | 
			
		||||
    update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12 && \
 | 
			
		||||
    # Fix Trivy CVE Issues
 | 
			
		||||
    pip install Jinja2==3.1.3 transformers==4.36.2 gradio==4.19.2 cryptography==42.0.4 && \
 | 
			
		||||
    # Fix Qwen model adapter in fastchat
 | 
			
		||||
| 
						 | 
				
			
			@ -24,10 +26,11 @@ RUN wget -qO /sbin/tini https://github.com/krallin/tini/releases/download/${TINI
 | 
			
		|||
    # Install vllm
 | 
			
		||||
    git clone https://github.com/vllm-project/vllm.git && \
 | 
			
		||||
    cd ./vllm && \
 | 
			
		||||
    git checkout v0.4.2 && \
 | 
			
		||||
    pip install wheel packaging ninja setuptools>=49.4.0 numpy && \
 | 
			
		||||
    git checkout v0.6.6.post1 && \
 | 
			
		||||
    pip install cmake>=3.26 wheel packaging ninja "setuptools-scm>=8" numpy && \
 | 
			
		||||
    pip install -v -r requirements-cpu.txt --extra-index-url https://download.pytorch.org/whl/cpu && \
 | 
			
		||||
    VLLM_TARGET_DEVICE=cpu python3 setup.py install
 | 
			
		||||
    VLLM_TARGET_DEVICE=cpu python3 setup.py install && \
 | 
			
		||||
    pip install ray
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
COPY ./vllm_offline_inference.py       /llm/
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -693,7 +693,6 @@ def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
 | 
			
		|||
                            out_features,
 | 
			
		||||
                            mp_group,
 | 
			
		||||
                            None,
 | 
			
		||||
                            None,
 | 
			
		||||
                            optimize_lm_head,
 | 
			
		||||
                            None
 | 
			
		||||
                        )
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -749,7 +749,7 @@ class LowBitLinear(nn.Linear):
 | 
			
		|||
                dist.inference_all_reduce(result, group=self.mp_group)
 | 
			
		||||
            if self.bias is not None:
 | 
			
		||||
                result += self.bias
 | 
			
		||||
        return result
 | 
			
		||||
        return result.to(x.dtype)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class FP16Linear(nn.Linear):
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -13,9 +13,10 @@
 | 
			
		|||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
from .engine import IPEXLLMAsyncLLMEngine, IPEXLLMLLMEngine, IPEXLLMClass
 | 
			
		||||
from .engine import IPEXLLMAsyncLLMEngine, IPEXLLMLLMEngine, IPEXLLMClass, run_mp_engine
 | 
			
		||||
__all__ = [
 | 
			
		||||
    "IPEXLLMAsyncLLMEngine",
 | 
			
		||||
    "IPEXLLMLLMEngine",
 | 
			
		||||
    "IPEXLLMClass",
 | 
			
		||||
    "run_mp_engine",
 | 
			
		||||
]
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -13,18 +13,28 @@
 | 
			
		|||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
from typing import List, Optional, Union
 | 
			
		||||
from vllm.logger import init_logger
 | 
			
		||||
from typing import Dict, Optional, Any, Union, Type
 | 
			
		||||
from vllm.engine.llm_engine import LLMEngine
 | 
			
		||||
from vllm.engine.async_llm_engine import AsyncLLMEngine
 | 
			
		||||
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
 | 
			
		||||
from vllm.entrypoints.llm import LLM
 | 
			
		||||
from vllm.executor.ray_utils import initialize_ray_cluster
 | 
			
		||||
from vllm.usage.usage_lib import (UsageContext, is_usage_stats_enabled,
 | 
			
		||||
                                  usage_message)
 | 
			
		||||
from vllm.utils import Counter
 | 
			
		||||
from vllm.config import VllmConfig
 | 
			
		||||
from ipex_llm.vllm.cpu.model_convert import _ipex_llm_convert
 | 
			
		||||
from vllm.usage.usage_lib import UsageContext
 | 
			
		||||
from vllm.engine.metrics import StatLoggerBase
 | 
			
		||||
from vllm.engine.multiprocessing.engine import MQLLMEngine
 | 
			
		||||
import signal
 | 
			
		||||
from vllm.engine.arg_utils import (EngineArgs, HfOverrides, PoolerConfig,
 | 
			
		||||
                                   TaskOption)
 | 
			
		||||
from vllm.config import CompilationConfig
 | 
			
		||||
from vllm.v1.engine.llm_engine import LLMEngine as V1LLMEngine
 | 
			
		||||
from vllm import envs
 | 
			
		||||
from vllm.v1.engine.async_llm import AsyncLLM
 | 
			
		||||
import os
 | 
			
		||||
 | 
			
		||||
from ipex_llm.utils.common import invalidInputError
 | 
			
		||||
logger = init_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class IPEXLLMAsyncLLMEngine(AsyncLLMEngine):
 | 
			
		||||
| 
						 | 
				
			
			@ -35,49 +45,43 @@ class IPEXLLMAsyncLLMEngine(AsyncLLMEngine):
 | 
			
		|||
    def from_engine_args(
 | 
			
		||||
        cls,
 | 
			
		||||
        engine_args: AsyncEngineArgs,
 | 
			
		||||
        engine_config: Optional[VllmConfig] = None,
 | 
			
		||||
        start_engine_loop: bool = True,
 | 
			
		||||
        usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
 | 
			
		||||
        load_in_low_bit: Optional[str] = None,
 | 
			
		||||
        load_in_low_bit: str = "sym_int4",
 | 
			
		||||
        stat_loggers: Optional[Dict[str, StatLoggerBase]]=None,
 | 
			
		||||
    ) -> "AsyncLLMEngine":
 | 
			
		||||
        """Creates an async LLM engine from the engine arguments."""
 | 
			
		||||
        # Enable ipex-llm optimizations
 | 
			
		||||
        engine_config = engine_args.create_engine_config()
 | 
			
		||||
        from ipex_llm.vllm.cpu.model_convert import _ipex_llm_convert
 | 
			
		||||
        # Create the engine configs.
 | 
			
		||||
        _ipex_llm_convert(load_in_low_bit)
 | 
			
		||||
        if engine_config.device_config.device_type == "neuron":
 | 
			
		||||
            from vllm.executor.neuron_executor import NeuronExecutorAsync
 | 
			
		||||
            executor_class = NeuronExecutorAsync
 | 
			
		||||
        elif engine_config.device_config.device_type == "cpu":
 | 
			
		||||
            invalidInputError(not engine_config.parallel_config.worker_use_ray, (
 | 
			
		||||
                "Ray is not supported with the CPU backend."))
 | 
			
		||||
            from vllm.executor.cpu_executor import CPUExecutorAsync
 | 
			
		||||
            executor_class = CPUExecutorAsync
 | 
			
		||||
        elif engine_config.parallel_config.worker_use_ray:
 | 
			
		||||
            initialize_ray_cluster(engine_config.parallel_config)
 | 
			
		||||
            from vllm.executor.ray_gpu_executor import RayGPUExecutorAsync
 | 
			
		||||
            executor_class = RayGPUExecutorAsync
 | 
			
		||||
        else:
 | 
			
		||||
            invalidInputError(engine_config.parallel_config.world_size == 1, (
 | 
			
		||||
                "Ray is required if parallel_config.world_size > 1."))
 | 
			
		||||
            from vllm.executor.gpu_executor import GPUExecutorAsync
 | 
			
		||||
            executor_class = GPUExecutorAsync
 | 
			
		||||
        # Create the async LLM engine.
 | 
			
		||||
        engine = cls(
 | 
			
		||||
            engine_config.parallel_config.worker_use_ray,
 | 
			
		||||
            engine_args.engine_use_ray,
 | 
			
		||||
            **engine_config.to_dict(),
 | 
			
		||||
            executor_class=executor_class,
 | 
			
		||||
            log_requests=not engine_args.disable_log_requests,
 | 
			
		||||
            log_stats=not engine_args.disable_log_stats,
 | 
			
		||||
            max_log_len=engine_args.max_log_len,
 | 
			
		||||
            start_engine_loop=start_engine_loop,
 | 
			
		||||
            usage_context=usage_context,
 | 
			
		||||
        )
 | 
			
		||||
        return engine
 | 
			
		||||
        return super().from_engine_args(engine_args=engine_args, engine_config=engine_config,
 | 
			
		||||
                                        start_engine_loop=start_engine_loop,
 | 
			
		||||
                                        usage_context=usage_context, stat_loggers=stat_loggers)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class IPEXLLMAsyncV1Engine(AsyncLLM):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, *args, **kwargs):
 | 
			
		||||
        print("IPEX-LLM V1 engine get started...")
 | 
			
		||||
        super().__init__(*args, **kwargs)
 | 
			
		||||
 | 
			
		||||
    @classmethod
 | 
			
		||||
    def from_engine_args(
 | 
			
		||||
        cls,
 | 
			
		||||
        engine_args: AsyncEngineArgs,
 | 
			
		||||
        engine_config: Optional[VllmConfig] = None,
 | 
			
		||||
        start_engine_loop: bool = True,
 | 
			
		||||
        usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
 | 
			
		||||
        load_in_low_bit: str = "sym_int4",
 | 
			
		||||
        stat_loggers: Optional[Dict[str, StatLoggerBase]]=None,
 | 
			
		||||
    ) -> "AsyncLLM":
 | 
			
		||||
        _ipex_llm_convert(load_in_low_bit)
 | 
			
		||||
        return super().from_engine_args(engine_args=engine_args, engine_config=engine_config,
 | 
			
		||||
                                        start_engine_loop=start_engine_loop,
 | 
			
		||||
                                        usage_context=usage_context, stat_loggers=stat_loggers)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class IPEXLLMClass(LLM):
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        model: str,
 | 
			
		||||
| 
						 | 
				
			
			@ -85,6 +89,7 @@ class IPEXLLMClass(LLM):
 | 
			
		|||
        tokenizer_mode: str = "auto",
 | 
			
		||||
        skip_tokenizer_init: bool = False,
 | 
			
		||||
        trust_remote_code: bool = False,
 | 
			
		||||
        allowed_local_media_path: str = "",
 | 
			
		||||
        tensor_parallel_size: int = 1,
 | 
			
		||||
        dtype: str = "auto",
 | 
			
		||||
        quantization: Optional[str] = None,
 | 
			
		||||
| 
						 | 
				
			
			@ -92,22 +97,48 @@ class IPEXLLMClass(LLM):
 | 
			
		|||
        tokenizer_revision: Optional[str] = None,
 | 
			
		||||
        seed: int = 0,
 | 
			
		||||
        gpu_memory_utilization: float = 0.9,
 | 
			
		||||
        swap_space: int = 4,
 | 
			
		||||
        enforce_eager: bool = False,
 | 
			
		||||
        max_context_len_to_capture: Optional[int] = None,
 | 
			
		||||
        swap_space: float = 4,
 | 
			
		||||
        cpu_offload_gb: float = 0,
 | 
			
		||||
        enforce_eager: Optional[bool] = None,
 | 
			
		||||
        max_seq_len_to_capture: int = 8192,
 | 
			
		||||
        disable_custom_all_reduce: bool = False,
 | 
			
		||||
        load_in_low_bit: Optional[str] = None,
 | 
			
		||||
        disable_async_output_proc: bool = True,
 | 
			
		||||
        hf_overrides: Optional[HfOverrides] = None,
 | 
			
		||||
        mm_processor_kwargs: Optional[Dict[str, Any]]=None,
 | 
			
		||||
        # After positional args are removed, move this right below `model`
 | 
			
		||||
        task: TaskOption = "auto",
 | 
			
		||||
        override_pooler_config: Optional[PoolerConfig] = None,
 | 
			
		||||
        compilation_config: Optional[Union[int, Dict[str, Any]]]=None,
 | 
			
		||||
        load_in_low_bit: str = "sym_int4",
 | 
			
		||||
        **kwargs,
 | 
			
		||||
    ) -> None:
 | 
			
		||||
        '''
 | 
			
		||||
        LLM constructor.
 | 
			
		||||
 | 
			
		||||
        Note: if enforce_eager is unset (enforce_eager is None)
 | 
			
		||||
        it defaults to False.
 | 
			
		||||
        '''
 | 
			
		||||
 | 
			
		||||
        if "disable_log_stats" not in kwargs:
 | 
			
		||||
            kwargs["disable_log_stats"] = True
 | 
			
		||||
 | 
			
		||||
        if compilation_config is not None:
 | 
			
		||||
            if isinstance(compilation_config, (int, dict)):
 | 
			
		||||
                compilation_config_instance = CompilationConfig.from_cli(
 | 
			
		||||
                    str(compilation_config))
 | 
			
		||||
            else:
 | 
			
		||||
                compilation_config_instance = compilation_config
 | 
			
		||||
        else:
 | 
			
		||||
            compilation_config_instance = None
 | 
			
		||||
 | 
			
		||||
        engine_args = EngineArgs(
 | 
			
		||||
            model=model,
 | 
			
		||||
            task=task,
 | 
			
		||||
            tokenizer=tokenizer,
 | 
			
		||||
            tokenizer_mode=tokenizer_mode,
 | 
			
		||||
            skip_tokenizer_init=skip_tokenizer_init,
 | 
			
		||||
            trust_remote_code=trust_remote_code,
 | 
			
		||||
            allowed_local_media_path=allowed_local_media_path,
 | 
			
		||||
            tensor_parallel_size=tensor_parallel_size,
 | 
			
		||||
            dtype=dtype,
 | 
			
		||||
            quantization=quantization,
 | 
			
		||||
| 
						 | 
				
			
			@ -116,16 +147,60 @@ class IPEXLLMClass(LLM):
 | 
			
		|||
            seed=seed,
 | 
			
		||||
            gpu_memory_utilization=gpu_memory_utilization,
 | 
			
		||||
            swap_space=swap_space,
 | 
			
		||||
            cpu_offload_gb=cpu_offload_gb,
 | 
			
		||||
            enforce_eager=enforce_eager,
 | 
			
		||||
            max_context_len_to_capture=max_context_len_to_capture,
 | 
			
		||||
            max_seq_len_to_capture=max_seq_len_to_capture,
 | 
			
		||||
            disable_custom_all_reduce=disable_custom_all_reduce,
 | 
			
		||||
            disable_async_output_proc=disable_async_output_proc,
 | 
			
		||||
            hf_overrides=hf_overrides,
 | 
			
		||||
            mm_processor_kwargs=mm_processor_kwargs,
 | 
			
		||||
            override_pooler_config=override_pooler_config,
 | 
			
		||||
            compilation_config=compilation_config_instance,
 | 
			
		||||
            **kwargs,
 | 
			
		||||
        )
 | 
			
		||||
        self.llm_engine = IPEXLLMLLMEngine.from_engine_args(engine_args,
 | 
			
		||||
                                                            load_in_low_bit=load_in_low_bit)
 | 
			
		||||
        # Logic to switch between engines is done at runtime instead of import
 | 
			
		||||
        # to avoid import order issues
 | 
			
		||||
        # TODO(gc): we will need to override this function
 | 
			
		||||
        self.engine_class = self.get_engine_class()
 | 
			
		||||
        self.llm_engine = self.engine_class.from_engine_args(
 | 
			
		||||
            engine_args, usage_context=UsageContext.LLM_CLASS,
 | 
			
		||||
            load_in_low_bit=load_in_low_bit)
 | 
			
		||||
 | 
			
		||||
        self.request_counter = Counter()
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def get_engine_class() -> Type[LLMEngine]:
 | 
			
		||||
        if envs.VLLM_USE_V1:
 | 
			
		||||
            # Lazy import: the v1 package isn't distributed
 | 
			
		||||
            # from vllm.v1.engine.llm_engine import LLMEngine as V1LLMEngine
 | 
			
		||||
            return IPEXLLMLLMV1Engine  # type: ignore
 | 
			
		||||
        return IPEXLLMLLMEngine
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# TODO(gc): implement this later...
 | 
			
		||||
class IPEXLLMLLMV1Engine(V1LLMEngine):
 | 
			
		||||
    def __init__(self, *args, **kwargs):
 | 
			
		||||
        super().__init__(*args, **kwargs)
 | 
			
		||||
 | 
			
		||||
    @classmethod
 | 
			
		||||
    def from_engine_args(
 | 
			
		||||
        cls,
 | 
			
		||||
        engine_args: EngineArgs,
 | 
			
		||||
        usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
 | 
			
		||||
        stat_loggers: Optional[Dict[str, StatLoggerBase]]=None,
 | 
			
		||||
        enable_multiprocessing: bool = False,
 | 
			
		||||
        load_in_low_bit: str = "sym_int4",
 | 
			
		||||
    ) -> "LLMEngine":
 | 
			
		||||
        """Creates an LLM engine from the engine arguments."""
 | 
			
		||||
        # Create the engine configs.
 | 
			
		||||
 | 
			
		||||
        # TODO(gc): delete this later
 | 
			
		||||
        print("IPEXLLM V1 Engine")
 | 
			
		||||
        # This does not work as it is in the seperate process...
 | 
			
		||||
        _ipex_llm_convert(load_in_low_bit)
 | 
			
		||||
        return super().from_engine_args(engine_args, usage_context,
 | 
			
		||||
                                        stat_loggers, enable_multiprocessing)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class IPEXLLMLLMEngine(LLMEngine):
 | 
			
		||||
    def __init__(self, *args, **kwargs):
 | 
			
		||||
| 
						 | 
				
			
			@ -136,35 +211,44 @@ class IPEXLLMLLMEngine(LLMEngine):
 | 
			
		|||
        cls,
 | 
			
		||||
        engine_args: EngineArgs,
 | 
			
		||||
        usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
 | 
			
		||||
        load_in_low_bit: Optional[str] = None,
 | 
			
		||||
        stat_loggers: Optional[Dict[str, StatLoggerBase]]=None,
 | 
			
		||||
        load_in_low_bit: str = "sym_int4",
 | 
			
		||||
    ) -> "LLMEngine":
 | 
			
		||||
        """Creates an LLM engine from the engine arguments."""
 | 
			
		||||
        # Create the engine configs.
 | 
			
		||||
        engine_config = engine_args.create_engine_config()
 | 
			
		||||
        from ipex_llm.vllm.cpu.model_convert import _ipex_llm_convert
 | 
			
		||||
        # TODO(gc): Delete
 | 
			
		||||
        print("Use vLLM v0 engine")
 | 
			
		||||
        _ipex_llm_convert(load_in_low_bit)
 | 
			
		||||
        return super().from_engine_args(engine_args, usage_context, stat_loggers)
 | 
			
		||||
 | 
			
		||||
        # Initialize the cluster and specify the executor class.
 | 
			
		||||
        if engine_config.device_config.device_type == "neuron":
 | 
			
		||||
            from vllm.executor.neuron_executor import NeuronExecutor
 | 
			
		||||
            executor_class = NeuronExecutor
 | 
			
		||||
        elif engine_config.device_config.device_type == "cpu":
 | 
			
		||||
            from vllm.executor.cpu_executor import CPUExecutor
 | 
			
		||||
            executor_class = CPUExecutor
 | 
			
		||||
        elif engine_config.parallel_config.worker_use_ray:
 | 
			
		||||
            initialize_ray_cluster(engine_config.parallel_config)
 | 
			
		||||
            from vllm.executor.ray_gpu_executor import RayGPUExecutor
 | 
			
		||||
            executor_class = RayGPUExecutor
 | 
			
		||||
        else:
 | 
			
		||||
            invalidInputError(engine_config.parallel_config.world_size == 1, (
 | 
			
		||||
                "Ray is required if parallel_config.world_size > 1."))
 | 
			
		||||
            from vllm.executor.gpu_executor import GPUExecutor
 | 
			
		||||
            executor_class = GPUExecutor
 | 
			
		||||
 | 
			
		||||
        # Create the LLM engine.
 | 
			
		||||
        engine = cls(**engine_config.to_dict(),
 | 
			
		||||
                     executor_class=executor_class,
 | 
			
		||||
                     log_stats=not engine_args.disable_log_stats,
 | 
			
		||||
                     usage_context=usage_context,
 | 
			
		||||
                     )
 | 
			
		||||
        return engine
 | 
			
		||||
class IPEXLLMMQLLMEngine(MQLLMEngine):
 | 
			
		||||
    @classmethod
 | 
			
		||||
    def from_engine_args(cls, engine_args: AsyncEngineArgs,
 | 
			
		||||
                         usage_context: UsageContext, ipc_path: str, load_in_low_bit: str):
 | 
			
		||||
        _ipex_llm_convert(load_in_low_bit)
 | 
			
		||||
        return super().from_engine_args(engine_args, usage_context, ipc_path)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def run_mp_engine(engine_args: AsyncEngineArgs, usage_context: UsageContext,
 | 
			
		||||
                  ipc_path: str, load_in_low_bit: str, engine_alive):
 | 
			
		||||
 | 
			
		||||
    def signal_handler(*_) -> None:
 | 
			
		||||
        # Interrupt server on sigterm
 | 
			
		||||
        raise KeyboardInterrupt("MQLLMEngine terminated")  # noqa
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        signal.signal(signal.SIGTERM, signal_handler)
 | 
			
		||||
 | 
			
		||||
        engine = IPEXLLMMQLLMEngine.from_engine_args(engine_args=engine_args,
 | 
			
		||||
                                                     usage_context=usage_context,
 | 
			
		||||
                                                     ipc_path=ipc_path,
 | 
			
		||||
                                                     load_in_low_bit=load_in_low_bit)
 | 
			
		||||
        engine.start()
 | 
			
		||||
    except BaseException as e:
 | 
			
		||||
        logger.exception(e)
 | 
			
		||||
        engine_alive.value = False
 | 
			
		||||
        raise e  # noqa
 | 
			
		||||
 | 
			
		||||
if os.getenv("VLLM_USE_V1"):
 | 
			
		||||
    IPEXLLMAsyncLLMEngine = IPEXLLMAsyncV1Engine
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										787
									
								
								python/llm/src/ipex_llm/vllm/cpu/entrypoints/api_server.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										787
									
								
								python/llm/src/ipex_llm/vllm/cpu/entrypoints/api_server.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,787 @@
 | 
			
		|||
import asyncio
 | 
			
		||||
import atexit
 | 
			
		||||
import importlib
 | 
			
		||||
import inspect
 | 
			
		||||
import multiprocessing
 | 
			
		||||
import os
 | 
			
		||||
import re
 | 
			
		||||
import signal
 | 
			
		||||
import socket
 | 
			
		||||
import tempfile
 | 
			
		||||
import uuid
 | 
			
		||||
from argparse import Namespace
 | 
			
		||||
from contextlib import asynccontextmanager
 | 
			
		||||
from functools import partial
 | 
			
		||||
from http import HTTPStatus
 | 
			
		||||
from typing import AsyncIterator, Optional, Set, Tuple
 | 
			
		||||
 | 
			
		||||
import uvloop
 | 
			
		||||
from fastapi import APIRouter, FastAPI, Request
 | 
			
		||||
from fastapi.exceptions import RequestValidationError
 | 
			
		||||
from fastapi.middleware.cors import CORSMiddleware
 | 
			
		||||
from fastapi.responses import JSONResponse, Response, StreamingResponse
 | 
			
		||||
from starlette.datastructures import State
 | 
			
		||||
from starlette.routing import Mount
 | 
			
		||||
from typing_extensions import assert_never
 | 
			
		||||
 | 
			
		||||
import vllm.envs as envs
 | 
			
		||||
from vllm.config import ModelConfig
 | 
			
		||||
from vllm.engine.arg_utils import AsyncEngineArgs
 | 
			
		||||
# from vllm.engine.async_llm_engine import AsyncLLMEngine  # type: ignore
 | 
			
		||||
from ipex_llm.vllm.cpu.engine import IPEXLLMAsyncLLMEngine as AsyncLLMEngine
 | 
			
		||||
from vllm.engine.multiprocessing.client import MQLLMEngineClient
 | 
			
		||||
# from vllm.engine.multiprocessing.engine import run_mp_engine
 | 
			
		||||
from ipex_llm.vllm.cpu.engine import run_mp_engine
 | 
			
		||||
from vllm.engine.protocol import EngineClient
 | 
			
		||||
from vllm.entrypoints.chat_utils import load_chat_template
 | 
			
		||||
from vllm.entrypoints.launcher import serve_http
 | 
			
		||||
from vllm.entrypoints.logger import RequestLogger
 | 
			
		||||
from vllm.entrypoints.openai.cli_args import (make_arg_parser,
 | 
			
		||||
                                              validate_parsed_serve_args)
 | 
			
		||||
from vllm.entrypoints.openai.serving_engine import OpenAIServing
 | 
			
		||||
# yapf conflicts with isort for this block
 | 
			
		||||
# yapf: disable
 | 
			
		||||
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
 | 
			
		||||
                                              ChatCompletionResponse,
 | 
			
		||||
                                              CompletionRequest,
 | 
			
		||||
                                              CompletionResponse,
 | 
			
		||||
                                              DetokenizeRequest,
 | 
			
		||||
                                              DetokenizeResponse,
 | 
			
		||||
                                              EmbeddingRequest,
 | 
			
		||||
                                              EmbeddingResponse,
 | 
			
		||||
                                              EmbeddingResponseData,
 | 
			
		||||
                                              ErrorResponse,
 | 
			
		||||
                                              LoadLoraAdapterRequest,
 | 
			
		||||
                                              PoolingRequest, PoolingResponse,
 | 
			
		||||
                                              ScoreRequest, ScoreResponse,
 | 
			
		||||
                                              TokenizeRequest,
 | 
			
		||||
                                              TokenizeResponse,
 | 
			
		||||
                                              UnloadLoraAdapterRequest)
 | 
			
		||||
# yapf: enable
 | 
			
		||||
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
 | 
			
		||||
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
 | 
			
		||||
from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
 | 
			
		||||
# from vllm.entrypoints.openai.serving_engine import BaseModelPath, OpenAIServing
 | 
			
		||||
from vllm.entrypoints.openai.serving_models import (BaseModelPath,
 | 
			
		||||
                                                    OpenAIServingModels)
 | 
			
		||||
 | 
			
		||||
from vllm.entrypoints.openai.serving_pooling import OpenAIServingPooling
 | 
			
		||||
from vllm.entrypoints.openai.serving_score import OpenAIServingScores
 | 
			
		||||
from vllm.entrypoints.openai.serving_tokenization import (
 | 
			
		||||
    OpenAIServingTokenization)
 | 
			
		||||
from vllm.entrypoints.openai.tool_parsers import ToolParserManager
 | 
			
		||||
from vllm.entrypoints.utils import with_cancellation
 | 
			
		||||
from vllm.logger import init_logger
 | 
			
		||||
from vllm.usage.usage_lib import UsageContext
 | 
			
		||||
from vllm.utils import (FlexibleArgumentParser, get_open_zmq_ipc_path,
 | 
			
		||||
                        is_valid_ipv6_address, set_ulimit)
 | 
			
		||||
from vllm.version import __version__ as VLLM_VERSION
 | 
			
		||||
 | 
			
		||||
TIMEOUT_KEEP_ALIVE = 5  # seconds
 | 
			
		||||
 | 
			
		||||
prometheus_multiproc_dir: tempfile.TemporaryDirectory
 | 
			
		||||
 | 
			
		||||
# Cannot use __name__ (https://github.com/vllm-project/vllm/pull/4765)
 | 
			
		||||
logger = init_logger('vllm.entrypoints.openai.api_server')
 | 
			
		||||
 | 
			
		||||
_running_tasks: Set[asyncio.Task] = set()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@asynccontextmanager
 | 
			
		||||
async def lifespan(app: FastAPI):
 | 
			
		||||
    try:
 | 
			
		||||
        if app.state.log_stats:
 | 
			
		||||
            engine_client: EngineClient = app.state.engine_client
 | 
			
		||||
 | 
			
		||||
            async def _force_log():
 | 
			
		||||
                while True:
 | 
			
		||||
                    await asyncio.sleep(10.)
 | 
			
		||||
                    await engine_client.do_log_stats()
 | 
			
		||||
 | 
			
		||||
            task = asyncio.create_task(_force_log())
 | 
			
		||||
            _running_tasks.add(task)
 | 
			
		||||
            task.add_done_callback(_running_tasks.remove)
 | 
			
		||||
        else:
 | 
			
		||||
            task = None
 | 
			
		||||
        try:
 | 
			
		||||
            yield
 | 
			
		||||
        finally:
 | 
			
		||||
            if task is not None:
 | 
			
		||||
                task.cancel()
 | 
			
		||||
    finally:
 | 
			
		||||
        # Ensure app state including engine ref is gc'd
 | 
			
		||||
        del app.state
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@asynccontextmanager
 | 
			
		||||
async def build_async_engine_client(
 | 
			
		||||
        args: Namespace) -> AsyncIterator[EngineClient]:
 | 
			
		||||
 | 
			
		||||
    # Context manager to handle engine_client lifecycle
 | 
			
		||||
    # Ensures everything is shutdown and cleaned up on error/exit
 | 
			
		||||
    engine_args = AsyncEngineArgs.from_cli_args(args)
 | 
			
		||||
 | 
			
		||||
    async with build_async_engine_client_from_engine_args(
 | 
			
		||||
            engine_args, args.disable_frontend_multiprocessing, args.load_in_low_bit) as engine:
 | 
			
		||||
        yield engine
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@asynccontextmanager
 | 
			
		||||
async def build_async_engine_client_from_engine_args(
 | 
			
		||||
    engine_args: AsyncEngineArgs,
 | 
			
		||||
    disable_frontend_multiprocessing: bool = False,
 | 
			
		||||
    load_in_low_bit: str = "sym_int4",
 | 
			
		||||
) -> AsyncIterator[EngineClient]:
 | 
			
		||||
    """
 | 
			
		||||
    Create EngineClient, either:
 | 
			
		||||
        - in-process using the AsyncLLMEngine Directly
 | 
			
		||||
        - multiprocess using AsyncLLMEngine RPC
 | 
			
		||||
 | 
			
		||||
    Returns the Client or None if the creation failed.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # Fall back
 | 
			
		||||
    # TODO: fill out feature matrix.
 | 
			
		||||
    if (MQLLMEngineClient.is_unsupported_config(engine_args)
 | 
			
		||||
            or envs.VLLM_USE_V1 or disable_frontend_multiprocessing):
 | 
			
		||||
        engine_config = engine_args.create_engine_config(
 | 
			
		||||
            UsageContext.OPENAI_API_SERVER)
 | 
			
		||||
        uses_ray = getattr(AsyncLLMEngine._get_executor_cls(engine_config),
 | 
			
		||||
                           "uses_ray", False)
 | 
			
		||||
 | 
			
		||||
        build_engine = partial(AsyncLLMEngine.from_engine_args,
 | 
			
		||||
                               load_in_low_bit=load_in_low_bit,
 | 
			
		||||
                               engine_args=engine_args,
 | 
			
		||||
                               engine_config=engine_config,
 | 
			
		||||
                               usage_context=UsageContext.OPENAI_API_SERVER)
 | 
			
		||||
        if uses_ray:
 | 
			
		||||
            # Must run in main thread with ray for its signal handlers to work
 | 
			
		||||
            engine_client = build_engine()
 | 
			
		||||
        else:
 | 
			
		||||
            engine_client = await asyncio.get_running_loop().run_in_executor(
 | 
			
		||||
                None, build_engine)
 | 
			
		||||
 | 
			
		||||
        yield engine_client
 | 
			
		||||
        if hasattr(engine_client, "shutdown"):
 | 
			
		||||
            engine_client.shutdown()
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    # Otherwise, use the multiprocessing AsyncLLMEngine.
 | 
			
		||||
    else:
 | 
			
		||||
        if "PROMETHEUS_MULTIPROC_DIR" not in os.environ:
 | 
			
		||||
            # Make TemporaryDirectory for prometheus multiprocessing
 | 
			
		||||
            # Note: global TemporaryDirectory will be automatically
 | 
			
		||||
            #   cleaned up upon exit.
 | 
			
		||||
            global prometheus_multiproc_dir
 | 
			
		||||
            prometheus_multiproc_dir = tempfile.TemporaryDirectory()
 | 
			
		||||
            os.environ[
 | 
			
		||||
                "PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name
 | 
			
		||||
        else:
 | 
			
		||||
            logger.warning(
 | 
			
		||||
                "Found PROMETHEUS_MULTIPROC_DIR was set by user. "
 | 
			
		||||
                "This directory must be wiped between vLLM runs or "
 | 
			
		||||
                "you will find inaccurate metrics. Unset the variable "
 | 
			
		||||
                "and vLLM will properly handle cleanup.")
 | 
			
		||||
 | 
			
		||||
        # Select random path for IPC.
 | 
			
		||||
        ipc_path = get_open_zmq_ipc_path()
 | 
			
		||||
        logger.debug("Multiprocessing frontend to use %s for IPC Path.",
 | 
			
		||||
                     ipc_path)
 | 
			
		||||
 | 
			
		||||
        # Start RPCServer in separate process (holds the LLMEngine).
 | 
			
		||||
        # the current process might have CUDA context,
 | 
			
		||||
        # so we need to spawn a new process
 | 
			
		||||
        context = multiprocessing.get_context("spawn")
 | 
			
		||||
 | 
			
		||||
        # The Process can raise an exception during startup, which may
 | 
			
		||||
        # not actually result in an exitcode being reported. As a result
 | 
			
		||||
        # we use a shared variable to communicate the information.
 | 
			
		||||
        engine_alive = multiprocessing.Value('b', True, lock=False)
 | 
			
		||||
        engine_process = context.Process(target=run_mp_engine,
 | 
			
		||||
                                         args=(engine_args,
 | 
			
		||||
                                               UsageContext.OPENAI_API_SERVER,
 | 
			
		||||
                                               ipc_path, load_in_low_bit, engine_alive))
 | 
			
		||||
        engine_process.start()
 | 
			
		||||
        engine_pid = engine_process.pid
 | 
			
		||||
        assert engine_pid is not None, "Engine process failed to start."
 | 
			
		||||
        logger.info("Started engine process with PID %d", engine_pid)
 | 
			
		||||
 | 
			
		||||
        def _cleanup_ipc_path():
 | 
			
		||||
            socket_path = ipc_path.replace("ipc://", "")
 | 
			
		||||
            if os.path.exists(socket_path):
 | 
			
		||||
                os.remove(socket_path)
 | 
			
		||||
 | 
			
		||||
        # Ensure we clean up the local IPC socket file on exit.
 | 
			
		||||
        atexit.register(_cleanup_ipc_path)
 | 
			
		||||
 | 
			
		||||
        # Build RPCClient, which conforms to EngineClient Protocol.
 | 
			
		||||
        engine_config = engine_args.create_engine_config()
 | 
			
		||||
        build_client = partial(MQLLMEngineClient, ipc_path, engine_config,
 | 
			
		||||
                               engine_pid)
 | 
			
		||||
        mq_engine_client = await asyncio.get_running_loop().run_in_executor(
 | 
			
		||||
            None, build_client)
 | 
			
		||||
        try:
 | 
			
		||||
            while True:
 | 
			
		||||
                try:
 | 
			
		||||
                    await mq_engine_client.setup()
 | 
			
		||||
                    break
 | 
			
		||||
                except TimeoutError:
 | 
			
		||||
                    if (not engine_process.is_alive()
 | 
			
		||||
                            or not engine_alive.value):
 | 
			
		||||
                        raise RuntimeError(
 | 
			
		||||
                            "Engine process failed to start. See stack "
 | 
			
		||||
                            "trace for the root cause.") from None
 | 
			
		||||
 | 
			
		||||
            yield mq_engine_client  # type: ignore[misc]
 | 
			
		||||
        finally:
 | 
			
		||||
            # Ensure rpc server process was terminated
 | 
			
		||||
            engine_process.terminate()
 | 
			
		||||
 | 
			
		||||
            # Close all open connections to the backend
 | 
			
		||||
            mq_engine_client.close()
 | 
			
		||||
 | 
			
		||||
            # Wait for engine process to join
 | 
			
		||||
            engine_process.join(4)
 | 
			
		||||
            if engine_process.exitcode is None:
 | 
			
		||||
                # Kill if taking longer than 5 seconds to stop
 | 
			
		||||
                engine_process.kill()
 | 
			
		||||
 | 
			
		||||
            # Lazy import for prometheus multiprocessing.
 | 
			
		||||
            # We need to set PROMETHEUS_MULTIPROC_DIR environment variable
 | 
			
		||||
            # before prometheus_client is imported.
 | 
			
		||||
            # See https://prometheus.github.io/client_python/multiprocess/
 | 
			
		||||
            from prometheus_client import multiprocess
 | 
			
		||||
            multiprocess.mark_process_dead(engine_process.pid)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
router = APIRouter()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def mount_metrics(app: FastAPI):
 | 
			
		||||
    # Lazy import for prometheus multiprocessing.
 | 
			
		||||
    # We need to set PROMETHEUS_MULTIPROC_DIR environment variable
 | 
			
		||||
    # before prometheus_client is imported.
 | 
			
		||||
    # See https://prometheus.github.io/client_python/multiprocess/
 | 
			
		||||
    from prometheus_client import (CollectorRegistry, make_asgi_app,
 | 
			
		||||
                                   multiprocess)
 | 
			
		||||
 | 
			
		||||
    prometheus_multiproc_dir_path = os.getenv("PROMETHEUS_MULTIPROC_DIR", None)
 | 
			
		||||
    if prometheus_multiproc_dir_path is not None:
 | 
			
		||||
        logger.debug("vLLM to use %s as PROMETHEUS_MULTIPROC_DIR",
 | 
			
		||||
                     prometheus_multiproc_dir_path)
 | 
			
		||||
        registry = CollectorRegistry()
 | 
			
		||||
        multiprocess.MultiProcessCollector(registry)
 | 
			
		||||
 | 
			
		||||
        # Add prometheus asgi middleware to route /metrics requests
 | 
			
		||||
        metrics_route = Mount("/metrics", make_asgi_app(registry=registry))
 | 
			
		||||
    else:
 | 
			
		||||
        # Add prometheus asgi middleware to route /metrics requests
 | 
			
		||||
        metrics_route = Mount("/metrics", make_asgi_app())
 | 
			
		||||
 | 
			
		||||
    # Workaround for 307 Redirect for /metrics
 | 
			
		||||
    metrics_route.path_regex = re.compile("^/metrics(?P<path>.*)$")
 | 
			
		||||
    app.routes.append(metrics_route)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def base(request: Request) -> OpenAIServing:
 | 
			
		||||
    # Reuse the existing instance
 | 
			
		||||
    return tokenization(request)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def chat(request: Request) -> Optional[OpenAIServingChat]:
 | 
			
		||||
    return request.app.state.openai_serving_chat
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def completion(request: Request) -> Optional[OpenAIServingCompletion]:
 | 
			
		||||
    return request.app.state.openai_serving_completion
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def pooling(request: Request) -> Optional[OpenAIServingPooling]:
 | 
			
		||||
    return request.app.state.openai_serving_pooling
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def embedding(request: Request) -> Optional[OpenAIServingEmbedding]:
 | 
			
		||||
    return request.app.state.openai_serving_embedding
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def score(request: Request) -> Optional[OpenAIServingScores]:
 | 
			
		||||
    return request.app.state.openai_serving_scores
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def tokenization(request: Request) -> OpenAIServingTokenization:
 | 
			
		||||
    return request.app.state.openai_serving_tokenization
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def engine_client(request: Request) -> EngineClient:
 | 
			
		||||
    return request.app.state.engine_client
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@router.get("/health")
 | 
			
		||||
async def health(raw_request: Request) -> Response:
 | 
			
		||||
    """Health check."""
 | 
			
		||||
    await engine_client(raw_request).check_health()
 | 
			
		||||
    return Response(status_code=200)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@router.post("/tokenize")
 | 
			
		||||
@with_cancellation
 | 
			
		||||
async def tokenize(request: TokenizeRequest, raw_request: Request):
 | 
			
		||||
    handler = tokenization(raw_request)
 | 
			
		||||
 | 
			
		||||
    generator = await handler.create_tokenize(request, raw_request)
 | 
			
		||||
    if isinstance(generator, ErrorResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump(),
 | 
			
		||||
                            status_code=generator.code)
 | 
			
		||||
    elif isinstance(generator, TokenizeResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump())
 | 
			
		||||
 | 
			
		||||
    assert_never(generator)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@router.post("/detokenize")
 | 
			
		||||
@with_cancellation
 | 
			
		||||
async def detokenize(request: DetokenizeRequest, raw_request: Request):
 | 
			
		||||
    handler = tokenization(raw_request)
 | 
			
		||||
 | 
			
		||||
    generator = await handler.create_detokenize(request, raw_request)
 | 
			
		||||
    if isinstance(generator, ErrorResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump(),
 | 
			
		||||
                            status_code=generator.code)
 | 
			
		||||
    elif isinstance(generator, DetokenizeResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump())
 | 
			
		||||
 | 
			
		||||
    assert_never(generator)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@router.get("/v1/models")
 | 
			
		||||
async def show_available_models(raw_request: Request):
 | 
			
		||||
    handler = base(raw_request)
 | 
			
		||||
 | 
			
		||||
    models = await handler.show_available_models()
 | 
			
		||||
    return JSONResponse(content=models.model_dump())
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@router.get("/version")
 | 
			
		||||
async def show_version():
 | 
			
		||||
    ver = {"version": VLLM_VERSION}
 | 
			
		||||
    return JSONResponse(content=ver)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@router.post("/v1/chat/completions")
 | 
			
		||||
@with_cancellation
 | 
			
		||||
async def create_chat_completion(request: ChatCompletionRequest,
 | 
			
		||||
                                 raw_request: Request):
 | 
			
		||||
    handler = chat(raw_request)
 | 
			
		||||
    if handler is None:
 | 
			
		||||
        return base(raw_request).create_error_response(
 | 
			
		||||
            message="The model does not support Chat Completions API")
 | 
			
		||||
 | 
			
		||||
    generator = await handler.create_chat_completion(request, raw_request)
 | 
			
		||||
 | 
			
		||||
    if isinstance(generator, ErrorResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump(),
 | 
			
		||||
                            status_code=generator.code)
 | 
			
		||||
 | 
			
		||||
    elif isinstance(generator, ChatCompletionResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump())
 | 
			
		||||
 | 
			
		||||
    return StreamingResponse(content=generator, media_type="text/event-stream")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@router.post("/v1/completions")
 | 
			
		||||
@with_cancellation
 | 
			
		||||
async def create_completion(request: CompletionRequest, raw_request: Request):
 | 
			
		||||
    handler = completion(raw_request)
 | 
			
		||||
    if handler is None:
 | 
			
		||||
        return base(raw_request).create_error_response(
 | 
			
		||||
            message="The model does not support Completions API")
 | 
			
		||||
 | 
			
		||||
    generator = await handler.create_completion(request, raw_request)
 | 
			
		||||
    if isinstance(generator, ErrorResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump(),
 | 
			
		||||
                            status_code=generator.code)
 | 
			
		||||
    elif isinstance(generator, CompletionResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump())
 | 
			
		||||
 | 
			
		||||
    return StreamingResponse(content=generator, media_type="text/event-stream")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@router.post("/v1/embeddings")
 | 
			
		||||
@with_cancellation
 | 
			
		||||
async def create_embedding(request: EmbeddingRequest, raw_request: Request):
 | 
			
		||||
    handler = embedding(raw_request)
 | 
			
		||||
    if handler is None:
 | 
			
		||||
        fallback_handler = pooling(raw_request)
 | 
			
		||||
        if fallback_handler is None:
 | 
			
		||||
            return base(raw_request).create_error_response(
 | 
			
		||||
                message="The model does not support Embeddings API")
 | 
			
		||||
 | 
			
		||||
        logger.warning(
 | 
			
		||||
            "Embeddings API will become exclusive to embedding models "
 | 
			
		||||
            "in a future release. To return the hidden states directly, "
 | 
			
		||||
            "use the Pooling API (`/pooling`) instead.")
 | 
			
		||||
 | 
			
		||||
        res = await fallback_handler.create_pooling(request, raw_request)
 | 
			
		||||
        if isinstance(res, PoolingResponse):
 | 
			
		||||
            generator = EmbeddingResponse(
 | 
			
		||||
                id=res.id,
 | 
			
		||||
                object=res.object,
 | 
			
		||||
                created=res.created,
 | 
			
		||||
                model=res.model,
 | 
			
		||||
                data=[
 | 
			
		||||
                    EmbeddingResponseData(
 | 
			
		||||
                        index=d.index,
 | 
			
		||||
                        embedding=d.data,  # type: ignore
 | 
			
		||||
                    ) for d in res.data
 | 
			
		||||
                ],
 | 
			
		||||
                usage=res.usage,
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            generator = res
 | 
			
		||||
    else:
 | 
			
		||||
        generator = await handler.create_embedding(request, raw_request)
 | 
			
		||||
 | 
			
		||||
    if isinstance(generator, ErrorResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump(),
 | 
			
		||||
                            status_code=generator.code)
 | 
			
		||||
    elif isinstance(generator, EmbeddingResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump())
 | 
			
		||||
 | 
			
		||||
    assert_never(generator)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@router.post("/pooling")
 | 
			
		||||
@with_cancellation
 | 
			
		||||
async def create_pooling(request: PoolingRequest, raw_request: Request):
 | 
			
		||||
    handler = pooling(raw_request)
 | 
			
		||||
    if handler is None:
 | 
			
		||||
        return base(raw_request).create_error_response(
 | 
			
		||||
            message="The model does not support Pooling API")
 | 
			
		||||
 | 
			
		||||
    generator = await handler.create_pooling(request, raw_request)
 | 
			
		||||
    if isinstance(generator, ErrorResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump(),
 | 
			
		||||
                            status_code=generator.code)
 | 
			
		||||
    elif isinstance(generator, PoolingResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump())
 | 
			
		||||
 | 
			
		||||
    assert_never(generator)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@router.post("/score")
 | 
			
		||||
@with_cancellation
 | 
			
		||||
async def create_score(request: ScoreRequest, raw_request: Request):
 | 
			
		||||
    handler = score(raw_request)
 | 
			
		||||
    if handler is None:
 | 
			
		||||
        return base(raw_request).create_error_response(
 | 
			
		||||
            message="The model does not support Score API")
 | 
			
		||||
 | 
			
		||||
    generator = await handler.create_score(request, raw_request)
 | 
			
		||||
    if isinstance(generator, ErrorResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump(),
 | 
			
		||||
                            status_code=generator.code)
 | 
			
		||||
    elif isinstance(generator, ScoreResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump())
 | 
			
		||||
 | 
			
		||||
    assert_never(generator)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@router.post("/v1/score")
 | 
			
		||||
@with_cancellation
 | 
			
		||||
async def create_score_v1(request: ScoreRequest, raw_request: Request):
 | 
			
		||||
    logger.warning(
 | 
			
		||||
        "To indicate that Score API is not part of standard OpenAI API, we "
 | 
			
		||||
        "have moved it to `/score`. Please update your client accordingly.")
 | 
			
		||||
 | 
			
		||||
    return await create_score(request, raw_request)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if envs.VLLM_TORCH_PROFILER_DIR:
 | 
			
		||||
    logger.warning(
 | 
			
		||||
        "Torch Profiler is enabled in the API server. This should ONLY be "
 | 
			
		||||
        "used for local development!")
 | 
			
		||||
 | 
			
		||||
    @router.post("/start_profile")
 | 
			
		||||
    async def start_profile(raw_request: Request):
 | 
			
		||||
        logger.info("Starting profiler...")
 | 
			
		||||
        await engine_client(raw_request).start_profile()
 | 
			
		||||
        logger.info("Profiler started.")
 | 
			
		||||
        return Response(status_code=200)
 | 
			
		||||
 | 
			
		||||
    @router.post("/stop_profile")
 | 
			
		||||
    async def stop_profile(raw_request: Request):
 | 
			
		||||
        logger.info("Stopping profiler...")
 | 
			
		||||
        await engine_client(raw_request).stop_profile()
 | 
			
		||||
        logger.info("Profiler stopped.")
 | 
			
		||||
        return Response(status_code=200)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if envs.VLLM_ALLOW_RUNTIME_LORA_UPDATING:
 | 
			
		||||
    logger.warning(
 | 
			
		||||
        "Lora dynamic loading & unloading is enabled in the API server. "
 | 
			
		||||
        "This should ONLY be used for local development!")
 | 
			
		||||
 | 
			
		||||
    @router.post("/v1/load_lora_adapter")
 | 
			
		||||
    async def load_lora_adapter(request: LoadLoraAdapterRequest,
 | 
			
		||||
                                raw_request: Request):
 | 
			
		||||
        for route in [chat, completion, embedding]:
 | 
			
		||||
            handler = route(raw_request)
 | 
			
		||||
            if handler is not None:
 | 
			
		||||
                response = await handler.load_lora_adapter(request)
 | 
			
		||||
                if isinstance(response, ErrorResponse):
 | 
			
		||||
                    return JSONResponse(content=response.model_dump(),
 | 
			
		||||
                                        status_code=response.code)
 | 
			
		||||
 | 
			
		||||
        return Response(status_code=200, content=response)
 | 
			
		||||
 | 
			
		||||
    @router.post("/v1/unload_lora_adapter")
 | 
			
		||||
    async def unload_lora_adapter(request: UnloadLoraAdapterRequest,
 | 
			
		||||
                                  raw_request: Request):
 | 
			
		||||
        for route in [chat, completion, embedding]:
 | 
			
		||||
            handler = route(raw_request)
 | 
			
		||||
            if handler is not None:
 | 
			
		||||
                response = await handler.unload_lora_adapter(request)
 | 
			
		||||
                if isinstance(response, ErrorResponse):
 | 
			
		||||
                    return JSONResponse(content=response.model_dump(),
 | 
			
		||||
                                        status_code=response.code)
 | 
			
		||||
 | 
			
		||||
        return Response(status_code=200, content=response)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def build_app(args: Namespace) -> FastAPI:
 | 
			
		||||
    if args.disable_fastapi_docs:
 | 
			
		||||
        app = FastAPI(openapi_url=None,
 | 
			
		||||
                      docs_url=None,
 | 
			
		||||
                      redoc_url=None,
 | 
			
		||||
                      lifespan=lifespan)
 | 
			
		||||
    else:
 | 
			
		||||
        app = FastAPI(lifespan=lifespan)
 | 
			
		||||
    app.include_router(router)
 | 
			
		||||
    app.root_path = args.root_path
 | 
			
		||||
 | 
			
		||||
    mount_metrics(app)
 | 
			
		||||
 | 
			
		||||
    app.add_middleware(
 | 
			
		||||
        CORSMiddleware,
 | 
			
		||||
        allow_origins=args.allowed_origins,
 | 
			
		||||
        allow_credentials=args.allow_credentials,
 | 
			
		||||
        allow_methods=args.allowed_methods,
 | 
			
		||||
        allow_headers=args.allowed_headers,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    @app.exception_handler(RequestValidationError)
 | 
			
		||||
    async def validation_exception_handler(_, exc):
 | 
			
		||||
        err = ErrorResponse(message=str(exc),
 | 
			
		||||
                            type="BadRequestError",
 | 
			
		||||
                            code=HTTPStatus.BAD_REQUEST)
 | 
			
		||||
        return JSONResponse(err.model_dump(),
 | 
			
		||||
                            status_code=HTTPStatus.BAD_REQUEST)
 | 
			
		||||
 | 
			
		||||
    if token := envs.VLLM_API_KEY or args.api_key:
 | 
			
		||||
 | 
			
		||||
        @app.middleware("http")
 | 
			
		||||
        async def authentication(request: Request, call_next):
 | 
			
		||||
            if request.method == "OPTIONS":
 | 
			
		||||
                return await call_next(request)
 | 
			
		||||
            url_path = request.url.path
 | 
			
		||||
            if app.root_path and url_path.startswith(app.root_path):
 | 
			
		||||
                url_path = url_path[len(app.root_path):]
 | 
			
		||||
            if not url_path.startswith("/v1"):
 | 
			
		||||
                return await call_next(request)
 | 
			
		||||
            if request.headers.get("Authorization") != "Bearer " + token:
 | 
			
		||||
                return JSONResponse(content={"error": "Unauthorized"},
 | 
			
		||||
                                    status_code=401)
 | 
			
		||||
            return await call_next(request)
 | 
			
		||||
 | 
			
		||||
    if args.enable_request_id_headers:
 | 
			
		||||
        logger.warning(
 | 
			
		||||
            "CAUTION: Enabling X-Request-Id headers in the API Server. "
 | 
			
		||||
            "This can harm performance at high QPS.")
 | 
			
		||||
 | 
			
		||||
        @app.middleware("http")
 | 
			
		||||
        async def add_request_id(request: Request, call_next):
 | 
			
		||||
            request_id = request.headers.get(
 | 
			
		||||
                "X-Request-Id") or uuid.uuid4().hex
 | 
			
		||||
            response = await call_next(request)
 | 
			
		||||
            response.headers["X-Request-Id"] = request_id
 | 
			
		||||
            return response
 | 
			
		||||
 | 
			
		||||
    for middleware in args.middleware:
 | 
			
		||||
        module_path, object_name = middleware.rsplit(".", 1)
 | 
			
		||||
        imported = getattr(importlib.import_module(module_path), object_name)
 | 
			
		||||
        if inspect.isclass(imported):
 | 
			
		||||
            app.add_middleware(imported)
 | 
			
		||||
        elif inspect.iscoroutinefunction(imported):
 | 
			
		||||
            app.middleware("http")(imported)
 | 
			
		||||
        else:
 | 
			
		||||
            raise ValueError(f"Invalid middleware {middleware}. "
 | 
			
		||||
                             f"Must be a function or a class.")
 | 
			
		||||
 | 
			
		||||
    return app
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def init_app_state(
 | 
			
		||||
    engine_client: EngineClient,
 | 
			
		||||
    model_config: ModelConfig,
 | 
			
		||||
    state: State,
 | 
			
		||||
    args: Namespace,
 | 
			
		||||
) -> None:
 | 
			
		||||
    if args.served_model_name is not None:
 | 
			
		||||
        served_model_names = args.served_model_name
 | 
			
		||||
    else:
 | 
			
		||||
        served_model_names = [args.model]
 | 
			
		||||
 | 
			
		||||
    if args.disable_log_requests:
 | 
			
		||||
        request_logger = None
 | 
			
		||||
    else:
 | 
			
		||||
        request_logger = RequestLogger(max_log_len=args.max_log_len)
 | 
			
		||||
 | 
			
		||||
    base_model_paths = [
 | 
			
		||||
        BaseModelPath(name=name, model_path=args.model)
 | 
			
		||||
        for name in served_model_names
 | 
			
		||||
    ]
 | 
			
		||||
 | 
			
		||||
    state.engine_client = engine_client
 | 
			
		||||
    state.log_stats = not args.disable_log_stats
 | 
			
		||||
 | 
			
		||||
    resolved_chat_template = load_chat_template(args.chat_template)
 | 
			
		||||
    logger.info("Using supplied chat template:\n%s", resolved_chat_template)
 | 
			
		||||
 | 
			
		||||
    state.openai_serving_chat = OpenAIServingChat(
 | 
			
		||||
        engine_client,
 | 
			
		||||
        model_config,
 | 
			
		||||
        base_model_paths,
 | 
			
		||||
        args.response_role,
 | 
			
		||||
        lora_modules=args.lora_modules,
 | 
			
		||||
        prompt_adapters=args.prompt_adapters,
 | 
			
		||||
        request_logger=request_logger,
 | 
			
		||||
        chat_template=resolved_chat_template,
 | 
			
		||||
        chat_template_content_format=args.chat_template_content_format,
 | 
			
		||||
        return_tokens_as_token_ids=args.return_tokens_as_token_ids,
 | 
			
		||||
        enable_auto_tools=args.enable_auto_tool_choice,
 | 
			
		||||
        tool_parser=args.tool_call_parser,
 | 
			
		||||
        enable_prompt_tokens_details=args.enable_prompt_tokens_details,
 | 
			
		||||
    ) if model_config.runner_type == "generate" else None
 | 
			
		||||
    state.openai_serving_completion = OpenAIServingCompletion(
 | 
			
		||||
        engine_client,
 | 
			
		||||
        model_config,
 | 
			
		||||
        base_model_paths,
 | 
			
		||||
        lora_modules=args.lora_modules,
 | 
			
		||||
        prompt_adapters=args.prompt_adapters,
 | 
			
		||||
        request_logger=request_logger,
 | 
			
		||||
        return_tokens_as_token_ids=args.return_tokens_as_token_ids,
 | 
			
		||||
    ) if model_config.runner_type == "generate" else None
 | 
			
		||||
    state.openai_serving_pooling = OpenAIServingPooling(
 | 
			
		||||
        engine_client,
 | 
			
		||||
        model_config,
 | 
			
		||||
        base_model_paths,
 | 
			
		||||
        request_logger=request_logger,
 | 
			
		||||
        chat_template=resolved_chat_template,
 | 
			
		||||
        chat_template_content_format=args.chat_template_content_format,
 | 
			
		||||
    ) if model_config.runner_type == "pooling" else None
 | 
			
		||||
    state.openai_serving_embedding = OpenAIServingEmbedding(
 | 
			
		||||
        engine_client,
 | 
			
		||||
        model_config,
 | 
			
		||||
        base_model_paths,
 | 
			
		||||
        request_logger=request_logger,
 | 
			
		||||
        chat_template=resolved_chat_template,
 | 
			
		||||
        chat_template_content_format=args.chat_template_content_format,
 | 
			
		||||
    ) if model_config.task == "embed" else None
 | 
			
		||||
    state.openai_serving_scores = OpenAIServingScores(
 | 
			
		||||
        engine_client,
 | 
			
		||||
        model_config,
 | 
			
		||||
        base_model_paths,
 | 
			
		||||
        request_logger=request_logger
 | 
			
		||||
    ) if model_config.task == "score" else None
 | 
			
		||||
    state.openai_serving_tokenization = OpenAIServingTokenization(
 | 
			
		||||
        engine_client,
 | 
			
		||||
        model_config,
 | 
			
		||||
        base_model_paths,
 | 
			
		||||
        lora_modules=args.lora_modules,
 | 
			
		||||
        request_logger=request_logger,
 | 
			
		||||
        chat_template=resolved_chat_template,
 | 
			
		||||
        chat_template_content_format=args.chat_template_content_format,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def create_server_socket(addr: Tuple[str, int]) -> socket.socket:
 | 
			
		||||
    family = socket.AF_INET
 | 
			
		||||
    if is_valid_ipv6_address(addr[0]):
 | 
			
		||||
        family = socket.AF_INET6
 | 
			
		||||
 | 
			
		||||
    sock = socket.socket(family=family, type=socket.SOCK_STREAM)
 | 
			
		||||
    sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 | 
			
		||||
    sock.bind(addr)
 | 
			
		||||
 | 
			
		||||
    return sock
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
async def run_server(args, **uvicorn_kwargs) -> None:
 | 
			
		||||
    logger.info("vLLM API server version %s", VLLM_VERSION)
 | 
			
		||||
    logger.info("args: %s", args)
 | 
			
		||||
 | 
			
		||||
    if args.tool_parser_plugin and len(args.tool_parser_plugin) > 3:
 | 
			
		||||
        ToolParserManager.import_tool_parser(args.tool_parser_plugin)
 | 
			
		||||
 | 
			
		||||
    valide_tool_parses = ToolParserManager.tool_parsers.keys()
 | 
			
		||||
    if args.enable_auto_tool_choice \
 | 
			
		||||
        and args.tool_call_parser not in valide_tool_parses:
 | 
			
		||||
        raise KeyError(f"invalid tool call parser: {args.tool_call_parser} "
 | 
			
		||||
                       f"(chose from {{ {','.join(valide_tool_parses)} }})")
 | 
			
		||||
 | 
			
		||||
    # workaround to make sure that we bind the port before the engine is set up.
 | 
			
		||||
    # This avoids race conditions with ray.
 | 
			
		||||
    # see https://github.com/vllm-project/vllm/issues/8204
 | 
			
		||||
    sock_addr = (args.host or "", args.port)
 | 
			
		||||
    sock = create_server_socket(sock_addr)
 | 
			
		||||
 | 
			
		||||
    # workaround to avoid footguns where uvicorn drops requests with too
 | 
			
		||||
    # many concurrent requests active
 | 
			
		||||
    set_ulimit()
 | 
			
		||||
 | 
			
		||||
    def signal_handler(*_) -> None:
 | 
			
		||||
        # Interrupt server on sigterm while initializing
 | 
			
		||||
        raise KeyboardInterrupt("terminated")
 | 
			
		||||
 | 
			
		||||
    signal.signal(signal.SIGTERM, signal_handler)
 | 
			
		||||
 | 
			
		||||
    async with build_async_engine_client(args) as engine_client:
 | 
			
		||||
        app = build_app(args)
 | 
			
		||||
 | 
			
		||||
        model_config = await engine_client.get_model_config()
 | 
			
		||||
        init_app_state(engine_client, model_config, app.state, args)
 | 
			
		||||
 | 
			
		||||
        shutdown_task = await serve_http(
 | 
			
		||||
            app,
 | 
			
		||||
            host=args.host,
 | 
			
		||||
            port=args.port,
 | 
			
		||||
            log_level=args.uvicorn_log_level,
 | 
			
		||||
            timeout_keep_alive=TIMEOUT_KEEP_ALIVE,
 | 
			
		||||
            ssl_keyfile=args.ssl_keyfile,
 | 
			
		||||
            ssl_certfile=args.ssl_certfile,
 | 
			
		||||
            ssl_ca_certs=args.ssl_ca_certs,
 | 
			
		||||
            ssl_cert_reqs=args.ssl_cert_reqs,
 | 
			
		||||
            **uvicorn_kwargs,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    # NB: Await server shutdown only after the backend context is exited
 | 
			
		||||
    await shutdown_task
 | 
			
		||||
 | 
			
		||||
    sock.close()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # NOTE(simon):
 | 
			
		||||
    # This section should be in sync with vllm/scripts.py for CLI entrypoints.
 | 
			
		||||
    parser = FlexibleArgumentParser(
 | 
			
		||||
        description="vLLM OpenAI-Compatible RESTful API server.")
 | 
			
		||||
    parser = make_arg_parser(parser)
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--load-in-low-bit",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default="sym_int4",
 | 
			
		||||
        help="Low-bit quantization for IPEX-LLM models")
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    validate_parsed_serve_args(args)
 | 
			
		||||
 | 
			
		||||
    uvloop.run(run_server(args))
 | 
			
		||||
| 
						 | 
				
			
			@ -1,138 +1,559 @@
 | 
			
		|||
import asyncio
 | 
			
		||||
import atexit
 | 
			
		||||
import importlib
 | 
			
		||||
import inspect
 | 
			
		||||
import multiprocessing
 | 
			
		||||
import os
 | 
			
		||||
import re
 | 
			
		||||
import signal
 | 
			
		||||
import socket
 | 
			
		||||
import tempfile
 | 
			
		||||
import uuid
 | 
			
		||||
from argparse import Namespace
 | 
			
		||||
from contextlib import asynccontextmanager
 | 
			
		||||
from functools import partial
 | 
			
		||||
from http import HTTPStatus
 | 
			
		||||
from typing import Any, Set
 | 
			
		||||
from typing import AsyncIterator, Optional, Set, Tuple
 | 
			
		||||
 | 
			
		||||
import fastapi
 | 
			
		||||
import uvicorn
 | 
			
		||||
from fastapi import Request
 | 
			
		||||
import uvloop
 | 
			
		||||
from fastapi import APIRouter, FastAPI, Request
 | 
			
		||||
from fastapi.exceptions import RequestValidationError
 | 
			
		||||
from fastapi.middleware.cors import CORSMiddleware
 | 
			
		||||
from fastapi.responses import JSONResponse, Response, StreamingResponse
 | 
			
		||||
from prometheus_client import make_asgi_app
 | 
			
		||||
from starlette.datastructures import State
 | 
			
		||||
from starlette.routing import Mount
 | 
			
		||||
from typing_extensions import assert_never
 | 
			
		||||
 | 
			
		||||
import vllm
 | 
			
		||||
import vllm.envs as envs
 | 
			
		||||
from vllm.config import ModelConfig
 | 
			
		||||
from vllm.engine.arg_utils import AsyncEngineArgs
 | 
			
		||||
from vllm.engine.async_llm_engine import AsyncLLMEngine
 | 
			
		||||
from vllm.entrypoints.openai.cli_args import make_arg_parser
 | 
			
		||||
from ipex_llm.vllm.cpu.engine import IPEXLLMAsyncLLMEngine as AsyncLLMEngine
 | 
			
		||||
from vllm.engine.multiprocessing.client import MQLLMEngineClient
 | 
			
		||||
from ipex_llm.vllm.cpu.engine import run_mp_engine
 | 
			
		||||
from vllm.engine.protocol import EngineClient
 | 
			
		||||
from vllm.entrypoints.chat_utils import load_chat_template
 | 
			
		||||
from vllm.entrypoints.launcher import serve_http
 | 
			
		||||
from vllm.entrypoints.logger import RequestLogger
 | 
			
		||||
from vllm.entrypoints.openai.cli_args import (make_arg_parser,
 | 
			
		||||
                                              validate_parsed_serve_args)
 | 
			
		||||
# yapf conflicts with isort for this block
 | 
			
		||||
# yapf: disable
 | 
			
		||||
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
 | 
			
		||||
                                              ChatCompletionResponse,
 | 
			
		||||
                                              CompletionRequest, ErrorResponse)
 | 
			
		||||
                                              CompletionRequest,
 | 
			
		||||
                                              CompletionResponse,
 | 
			
		||||
                                              DetokenizeRequest,
 | 
			
		||||
                                              DetokenizeResponse,
 | 
			
		||||
                                              EmbeddingRequest,
 | 
			
		||||
                                              EmbeddingResponse,
 | 
			
		||||
                                              EmbeddingResponseData,
 | 
			
		||||
                                              ErrorResponse,
 | 
			
		||||
                                              LoadLoraAdapterRequest,
 | 
			
		||||
                                              PoolingRequest, PoolingResponse,
 | 
			
		||||
                                              ScoreRequest, ScoreResponse,
 | 
			
		||||
                                              TokenizeRequest,
 | 
			
		||||
                                              TokenizeResponse,
 | 
			
		||||
                                              UnloadLoraAdapterRequest)
 | 
			
		||||
# yapf: enable
 | 
			
		||||
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
 | 
			
		||||
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
 | 
			
		||||
from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
 | 
			
		||||
from vllm.entrypoints.openai.serving_engine import BaseModelPath, OpenAIServing
 | 
			
		||||
from vllm.entrypoints.openai.serving_pooling import OpenAIServingPooling
 | 
			
		||||
from vllm.entrypoints.openai.serving_score import OpenAIServingScores
 | 
			
		||||
from vllm.entrypoints.openai.serving_tokenization import (
 | 
			
		||||
    OpenAIServingTokenization)
 | 
			
		||||
from vllm.entrypoints.openai.tool_parsers import ToolParserManager
 | 
			
		||||
from vllm.entrypoints.utils import with_cancellation
 | 
			
		||||
from vllm.logger import init_logger
 | 
			
		||||
from vllm.usage.usage_lib import UsageContext
 | 
			
		||||
 | 
			
		||||
from ipex_llm.vllm.cpu.engine import IPEXLLMAsyncLLMEngine
 | 
			
		||||
from ipex_llm.utils.common import invalidInputError
 | 
			
		||||
from vllm.utils import (FlexibleArgumentParser, get_open_zmq_ipc_path,
 | 
			
		||||
                        is_valid_ipv6_address, set_ulimit)
 | 
			
		||||
from vllm.version import __version__ as VLLM_VERSION
 | 
			
		||||
 | 
			
		||||
TIMEOUT_KEEP_ALIVE = 5  # seconds
 | 
			
		||||
 | 
			
		||||
openai_serving_chat: OpenAIServingChat
 | 
			
		||||
openai_serving_completion: OpenAIServingCompletion
 | 
			
		||||
logger = init_logger(__name__)
 | 
			
		||||
prometheus_multiproc_dir: tempfile.TemporaryDirectory
 | 
			
		||||
 | 
			
		||||
_running_tasks: Set[asyncio.Task[Any]] = set()
 | 
			
		||||
# Cannot use __name__ (https://github.com/vllm-project/vllm/pull/4765)
 | 
			
		||||
logger = init_logger('vllm.entrypoints.openai.api_server')
 | 
			
		||||
 | 
			
		||||
_running_tasks: Set[asyncio.Task] = set()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@asynccontextmanager
 | 
			
		||||
async def lifespan(app: fastapi.FastAPI):
 | 
			
		||||
async def lifespan(app: FastAPI):
 | 
			
		||||
    try:
 | 
			
		||||
        if app.state.log_stats:
 | 
			
		||||
            engine_client: EngineClient = app.state.engine_client
 | 
			
		||||
 | 
			
		||||
    async def _force_log():
 | 
			
		||||
        while True:
 | 
			
		||||
            await asyncio.sleep(10)
 | 
			
		||||
            await engine.do_log_stats()
 | 
			
		||||
            async def _force_log():
 | 
			
		||||
                while True:
 | 
			
		||||
                    await asyncio.sleep(10.)
 | 
			
		||||
                    await engine_client.do_log_stats()
 | 
			
		||||
 | 
			
		||||
    if not engine_args.disable_log_stats:
 | 
			
		||||
        task = asyncio.create_task(_force_log())
 | 
			
		||||
        _running_tasks.add(task)
 | 
			
		||||
        task.add_done_callback(_running_tasks.remove)
 | 
			
		||||
 | 
			
		||||
    yield
 | 
			
		||||
            task = asyncio.create_task(_force_log())
 | 
			
		||||
            _running_tasks.add(task)
 | 
			
		||||
            task.add_done_callback(_running_tasks.remove)
 | 
			
		||||
        else:
 | 
			
		||||
            task = None
 | 
			
		||||
        try:
 | 
			
		||||
            yield
 | 
			
		||||
        finally:
 | 
			
		||||
            if task is not None:
 | 
			
		||||
                task.cancel()
 | 
			
		||||
    finally:
 | 
			
		||||
        # Ensure app state including engine ref is gc'd
 | 
			
		||||
        del app.state
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
app = fastapi.FastAPI(lifespan=lifespan)
 | 
			
		||||
@asynccontextmanager
 | 
			
		||||
async def build_async_engine_client(
 | 
			
		||||
        args: Namespace) -> AsyncIterator[EngineClient]:
 | 
			
		||||
 | 
			
		||||
    # Context manager to handle engine_client lifecycle
 | 
			
		||||
    # Ensures everything is shutdown and cleaned up on error/exit
 | 
			
		||||
    engine_args = AsyncEngineArgs.from_cli_args(args)
 | 
			
		||||
 | 
			
		||||
    async with build_async_engine_client_from_engine_args(
 | 
			
		||||
            engine_args, args.disable_frontend_multiprocessing, args.load_in_low_bit) as engine:
 | 
			
		||||
        yield engine
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def parse_args():
 | 
			
		||||
    parser = make_arg_parser()
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--load-in-low-bit",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default=None,
 | 
			
		||||
        help="Low-bit quantization for IPEX-LLM models")
 | 
			
		||||
    return parser.parse_args()
 | 
			
		||||
@asynccontextmanager
 | 
			
		||||
async def build_async_engine_client_from_engine_args(
 | 
			
		||||
    engine_args: AsyncEngineArgs,
 | 
			
		||||
    disable_frontend_multiprocessing: bool = False,
 | 
			
		||||
    load_in_low_bit: str = "sym_int4",
 | 
			
		||||
) -> AsyncIterator[EngineClient]:
 | 
			
		||||
    """
 | 
			
		||||
    Create EngineClient, either:
 | 
			
		||||
        - in-process using the AsyncLLMEngine Directly
 | 
			
		||||
        - multiprocess using AsyncLLMEngine RPC
 | 
			
		||||
 | 
			
		||||
    Returns the Client or None if the creation failed.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # Fall back
 | 
			
		||||
    # TODO: fill out feature matrix.
 | 
			
		||||
    if (MQLLMEngineClient.is_unsupported_config(engine_args)
 | 
			
		||||
            or envs.VLLM_USE_V1 or disable_frontend_multiprocessing):
 | 
			
		||||
        engine_config = engine_args.create_engine_config(
 | 
			
		||||
            UsageContext.OPENAI_API_SERVER)
 | 
			
		||||
        uses_ray = getattr(AsyncLLMEngine._get_executor_cls(engine_config),
 | 
			
		||||
                           "uses_ray", False)
 | 
			
		||||
 | 
			
		||||
        build_engine = partial(AsyncLLMEngine.from_engine_args,
 | 
			
		||||
                               engine_args=engine_args,
 | 
			
		||||
                               engine_config=engine_config,
 | 
			
		||||
                               load_in_low_bit=load_in_low_bit,
 | 
			
		||||
                               usage_context=UsageContext.OPENAI_API_SERVER)
 | 
			
		||||
        if uses_ray:
 | 
			
		||||
            # Must run in main thread with ray for its signal handlers to work
 | 
			
		||||
            engine_client = build_engine()
 | 
			
		||||
        else:
 | 
			
		||||
            engine_client = await asyncio.get_running_loop().run_in_executor(
 | 
			
		||||
                None, build_engine)
 | 
			
		||||
 | 
			
		||||
        yield engine_client
 | 
			
		||||
        if hasattr(engine_client, "shutdown"):
 | 
			
		||||
            engine_client.shutdown()
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    # Otherwise, use the multiprocessing AsyncLLMEngine.
 | 
			
		||||
    else:
 | 
			
		||||
        if "PROMETHEUS_MULTIPROC_DIR" not in os.environ:
 | 
			
		||||
            # Make TemporaryDirectory for prometheus multiprocessing
 | 
			
		||||
            # Note: global TemporaryDirectory will be automatically
 | 
			
		||||
            #   cleaned up upon exit.
 | 
			
		||||
            global prometheus_multiproc_dir
 | 
			
		||||
            prometheus_multiproc_dir = tempfile.TemporaryDirectory()
 | 
			
		||||
            os.environ[
 | 
			
		||||
                "PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name
 | 
			
		||||
        else:
 | 
			
		||||
            logger.warning(
 | 
			
		||||
                "Found PROMETHEUS_MULTIPROC_DIR was set by user. "
 | 
			
		||||
                "This directory must be wiped between vLLM runs or "
 | 
			
		||||
                "you will find inaccurate metrics. Unset the variable "
 | 
			
		||||
                "and vLLM will properly handle cleanup.")
 | 
			
		||||
 | 
			
		||||
        # Select random path for IPC.
 | 
			
		||||
        ipc_path = get_open_zmq_ipc_path()
 | 
			
		||||
        logger.debug("Multiprocessing frontend to use %s for IPC Path.",
 | 
			
		||||
                     ipc_path)
 | 
			
		||||
 | 
			
		||||
        # Start RPCServer in separate process (holds the LLMEngine).
 | 
			
		||||
        # the current process might have CUDA context,
 | 
			
		||||
        # so we need to spawn a new process
 | 
			
		||||
        context = multiprocessing.get_context("spawn")
 | 
			
		||||
 | 
			
		||||
        # The Process can raise an exception during startup, which may
 | 
			
		||||
        # not actually result in an exitcode being reported. As a result
 | 
			
		||||
        # we use a shared variable to communicate the information.
 | 
			
		||||
        engine_alive = multiprocessing.Value('b', True, lock=False)
 | 
			
		||||
        engine_process = context.Process(target=run_mp_engine,
 | 
			
		||||
                                         args=(engine_args,
 | 
			
		||||
                                               UsageContext.OPENAI_API_SERVER,
 | 
			
		||||
                                               ipc_path, load_in_low_bit, engine_alive))
 | 
			
		||||
        engine_process.start()
 | 
			
		||||
        engine_pid = engine_process.pid
 | 
			
		||||
        assert engine_pid is not None, "Engine process failed to start."
 | 
			
		||||
        logger.info("Started engine process with PID %d", engine_pid)
 | 
			
		||||
 | 
			
		||||
        def _cleanup_ipc_path():
 | 
			
		||||
            socket_path = ipc_path.replace("ipc://", "")
 | 
			
		||||
            if os.path.exists(socket_path):
 | 
			
		||||
                os.remove(socket_path)
 | 
			
		||||
 | 
			
		||||
        # Ensure we clean up the local IPC socket file on exit.
 | 
			
		||||
        atexit.register(_cleanup_ipc_path)
 | 
			
		||||
 | 
			
		||||
        # Build RPCClient, which conforms to EngineClient Protocol.
 | 
			
		||||
        engine_config = engine_args.create_engine_config()
 | 
			
		||||
        build_client = partial(MQLLMEngineClient, ipc_path, engine_config,
 | 
			
		||||
                               engine_pid)
 | 
			
		||||
        mq_engine_client = await asyncio.get_running_loop().run_in_executor(
 | 
			
		||||
            None, build_client)
 | 
			
		||||
        try:
 | 
			
		||||
            while True:
 | 
			
		||||
                try:
 | 
			
		||||
                    await mq_engine_client.setup()
 | 
			
		||||
                    break
 | 
			
		||||
                except TimeoutError:
 | 
			
		||||
                    if (not engine_process.is_alive()
 | 
			
		||||
                            or not engine_alive.value):
 | 
			
		||||
                        raise RuntimeError(
 | 
			
		||||
                            "Engine process failed to start. See stack "
 | 
			
		||||
                            "trace for the root cause.") from None
 | 
			
		||||
 | 
			
		||||
            yield mq_engine_client  # type: ignore[misc]
 | 
			
		||||
        finally:
 | 
			
		||||
            # Ensure rpc server process was terminated
 | 
			
		||||
            engine_process.terminate()
 | 
			
		||||
 | 
			
		||||
            # Close all open connections to the backend
 | 
			
		||||
            mq_engine_client.close()
 | 
			
		||||
 | 
			
		||||
            # Wait for engine process to join
 | 
			
		||||
            engine_process.join(4)
 | 
			
		||||
            if engine_process.exitcode is None:
 | 
			
		||||
                # Kill if taking longer than 5 seconds to stop
 | 
			
		||||
                engine_process.kill()
 | 
			
		||||
 | 
			
		||||
            # Lazy import for prometheus multiprocessing.
 | 
			
		||||
            # We need to set PROMETHEUS_MULTIPROC_DIR environment variable
 | 
			
		||||
            # before prometheus_client is imported.
 | 
			
		||||
            # See https://prometheus.github.io/client_python/multiprocess/
 | 
			
		||||
            from prometheus_client import multiprocess
 | 
			
		||||
            multiprocess.mark_process_dead(engine_process.pid)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Add prometheus asgi middleware to route /metrics requests
 | 
			
		||||
route = Mount("/metrics", make_asgi_app())
 | 
			
		||||
# Workaround for 307 Redirect for /metrics
 | 
			
		||||
route.path_regex = re.compile('^/metrics(?P<path>.*)$')
 | 
			
		||||
app.routes.append(route)
 | 
			
		||||
router = APIRouter()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@app.exception_handler(RequestValidationError)
 | 
			
		||||
async def validation_exception_handler(_, exc):
 | 
			
		||||
    err = openai_serving_chat.create_error_response(message=str(exc))
 | 
			
		||||
    return JSONResponse(err.model_dump(), status_code=HTTPStatus.BAD_REQUEST)
 | 
			
		||||
def mount_metrics(app: FastAPI):
 | 
			
		||||
    # Lazy import for prometheus multiprocessing.
 | 
			
		||||
    # We need to set PROMETHEUS_MULTIPROC_DIR environment variable
 | 
			
		||||
    # before prometheus_client is imported.
 | 
			
		||||
    # See https://prometheus.github.io/client_python/multiprocess/
 | 
			
		||||
    from prometheus_client import (CollectorRegistry, make_asgi_app,
 | 
			
		||||
                                   multiprocess)
 | 
			
		||||
 | 
			
		||||
    prometheus_multiproc_dir_path = os.getenv("PROMETHEUS_MULTIPROC_DIR", None)
 | 
			
		||||
    if prometheus_multiproc_dir_path is not None:
 | 
			
		||||
        logger.debug("vLLM to use %s as PROMETHEUS_MULTIPROC_DIR",
 | 
			
		||||
                     prometheus_multiproc_dir_path)
 | 
			
		||||
        registry = CollectorRegistry()
 | 
			
		||||
        multiprocess.MultiProcessCollector(registry)
 | 
			
		||||
 | 
			
		||||
        # Add prometheus asgi middleware to route /metrics requests
 | 
			
		||||
        metrics_route = Mount("/metrics", make_asgi_app(registry=registry))
 | 
			
		||||
    else:
 | 
			
		||||
        # Add prometheus asgi middleware to route /metrics requests
 | 
			
		||||
        metrics_route = Mount("/metrics", make_asgi_app())
 | 
			
		||||
 | 
			
		||||
    # Workaround for 307 Redirect for /metrics
 | 
			
		||||
    metrics_route.path_regex = re.compile("^/metrics(?P<path>.*)$")
 | 
			
		||||
    app.routes.append(metrics_route)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@app.get("/health")
 | 
			
		||||
async def health() -> Response:
 | 
			
		||||
def base(request: Request) -> OpenAIServing:
 | 
			
		||||
    # Reuse the existing instance
 | 
			
		||||
    return tokenization(request)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def chat(request: Request) -> Optional[OpenAIServingChat]:
 | 
			
		||||
    return request.app.state.openai_serving_chat
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def completion(request: Request) -> Optional[OpenAIServingCompletion]:
 | 
			
		||||
    return request.app.state.openai_serving_completion
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def pooling(request: Request) -> Optional[OpenAIServingPooling]:
 | 
			
		||||
    return request.app.state.openai_serving_pooling
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def embedding(request: Request) -> Optional[OpenAIServingEmbedding]:
 | 
			
		||||
    return request.app.state.openai_serving_embedding
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def score(request: Request) -> Optional[OpenAIServingScores]:
 | 
			
		||||
    return request.app.state.openai_serving_scores
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def tokenization(request: Request) -> OpenAIServingTokenization:
 | 
			
		||||
    return request.app.state.openai_serving_tokenization
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def engine_client(request: Request) -> EngineClient:
 | 
			
		||||
    return request.app.state.engine_client
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@router.get("/health")
 | 
			
		||||
async def health(raw_request: Request) -> Response:
 | 
			
		||||
    """Health check."""
 | 
			
		||||
    await openai_serving_chat.engine.check_health()
 | 
			
		||||
    await engine_client(raw_request).check_health()
 | 
			
		||||
    return Response(status_code=200)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@app.get("/v1/models")
 | 
			
		||||
async def show_available_models():
 | 
			
		||||
    models = await openai_serving_chat.show_available_models()
 | 
			
		||||
@router.post("/tokenize")
 | 
			
		||||
@with_cancellation
 | 
			
		||||
async def tokenize(request: TokenizeRequest, raw_request: Request):
 | 
			
		||||
    handler = tokenization(raw_request)
 | 
			
		||||
 | 
			
		||||
    generator = await handler.create_tokenize(request, raw_request)
 | 
			
		||||
    if isinstance(generator, ErrorResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump(),
 | 
			
		||||
                            status_code=generator.code)
 | 
			
		||||
    elif isinstance(generator, TokenizeResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump())
 | 
			
		||||
 | 
			
		||||
    assert_never(generator)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@router.post("/detokenize")
 | 
			
		||||
@with_cancellation
 | 
			
		||||
async def detokenize(request: DetokenizeRequest, raw_request: Request):
 | 
			
		||||
    handler = tokenization(raw_request)
 | 
			
		||||
 | 
			
		||||
    generator = await handler.create_detokenize(request, raw_request)
 | 
			
		||||
    if isinstance(generator, ErrorResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump(),
 | 
			
		||||
                            status_code=generator.code)
 | 
			
		||||
    elif isinstance(generator, DetokenizeResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump())
 | 
			
		||||
 | 
			
		||||
    assert_never(generator)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@router.get("/v1/models")
 | 
			
		||||
async def show_available_models(raw_request: Request):
 | 
			
		||||
    handler = base(raw_request)
 | 
			
		||||
 | 
			
		||||
    models = await handler.show_available_models()
 | 
			
		||||
    return JSONResponse(content=models.model_dump())
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@app.get("/version")
 | 
			
		||||
@router.get("/version")
 | 
			
		||||
async def show_version():
 | 
			
		||||
    ver = {"version": vllm.__version__}
 | 
			
		||||
    ver = {"version": VLLM_VERSION}
 | 
			
		||||
    return JSONResponse(content=ver)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@app.post("/v1/chat/completions")
 | 
			
		||||
@router.post("/v1/chat/completions")
 | 
			
		||||
@with_cancellation
 | 
			
		||||
async def create_chat_completion(request: ChatCompletionRequest,
 | 
			
		||||
                                 raw_request: Request):
 | 
			
		||||
    generator = await openai_serving_chat.create_chat_completion(
 | 
			
		||||
        request, raw_request)
 | 
			
		||||
    handler = chat(raw_request)
 | 
			
		||||
    if handler is None:
 | 
			
		||||
        return base(raw_request).create_error_response(
 | 
			
		||||
            message="The model does not support Chat Completions API")
 | 
			
		||||
 | 
			
		||||
    generator = await handler.create_chat_completion(request, raw_request)
 | 
			
		||||
 | 
			
		||||
    if isinstance(generator, ErrorResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump(),
 | 
			
		||||
                            status_code=generator.code)
 | 
			
		||||
    if request.stream:
 | 
			
		||||
        return StreamingResponse(content=generator,
 | 
			
		||||
                                 media_type="text/event-stream")
 | 
			
		||||
    else:
 | 
			
		||||
 | 
			
		||||
    elif isinstance(generator, ChatCompletionResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump())
 | 
			
		||||
 | 
			
		||||
    return StreamingResponse(content=generator, media_type="text/event-stream")
 | 
			
		||||
 | 
			
		||||
@app.post("/v1/completions")
 | 
			
		||||
 | 
			
		||||
@router.post("/v1/completions")
 | 
			
		||||
@with_cancellation
 | 
			
		||||
async def create_completion(request: CompletionRequest, raw_request: Request):
 | 
			
		||||
    generator = await openai_serving_completion.create_completion(
 | 
			
		||||
        request, raw_request)
 | 
			
		||||
    handler = completion(raw_request)
 | 
			
		||||
    if handler is None:
 | 
			
		||||
        return base(raw_request).create_error_response(
 | 
			
		||||
            message="The model does not support Completions API")
 | 
			
		||||
 | 
			
		||||
    generator = await handler.create_completion(request, raw_request)
 | 
			
		||||
    if isinstance(generator, ErrorResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump(),
 | 
			
		||||
                            status_code=generator.code)
 | 
			
		||||
    if request.stream:
 | 
			
		||||
        return StreamingResponse(content=generator,
 | 
			
		||||
                                 media_type="text/event-stream")
 | 
			
		||||
    else:
 | 
			
		||||
    elif isinstance(generator, CompletionResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump())
 | 
			
		||||
 | 
			
		||||
    return StreamingResponse(content=generator, media_type="text/event-stream")
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    args = parse_args()
 | 
			
		||||
 | 
			
		||||
@router.post("/v1/embeddings")
 | 
			
		||||
@with_cancellation
 | 
			
		||||
async def create_embedding(request: EmbeddingRequest, raw_request: Request):
 | 
			
		||||
    handler = embedding(raw_request)
 | 
			
		||||
    if handler is None:
 | 
			
		||||
        fallback_handler = pooling(raw_request)
 | 
			
		||||
        if fallback_handler is None:
 | 
			
		||||
            return base(raw_request).create_error_response(
 | 
			
		||||
                message="The model does not support Embeddings API")
 | 
			
		||||
 | 
			
		||||
        logger.warning(
 | 
			
		||||
            "Embeddings API will become exclusive to embedding models "
 | 
			
		||||
            "in a future release. To return the hidden states directly, "
 | 
			
		||||
            "use the Pooling API (`/pooling`) instead.")
 | 
			
		||||
 | 
			
		||||
        res = await fallback_handler.create_pooling(request, raw_request)
 | 
			
		||||
        if isinstance(res, PoolingResponse):
 | 
			
		||||
            generator = EmbeddingResponse(
 | 
			
		||||
                id=res.id,
 | 
			
		||||
                object=res.object,
 | 
			
		||||
                created=res.created,
 | 
			
		||||
                model=res.model,
 | 
			
		||||
                data=[
 | 
			
		||||
                    EmbeddingResponseData(
 | 
			
		||||
                        index=d.index,
 | 
			
		||||
                        embedding=d.data,  # type: ignore
 | 
			
		||||
                    ) for d in res.data
 | 
			
		||||
                ],
 | 
			
		||||
                usage=res.usage,
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            generator = res
 | 
			
		||||
    else:
 | 
			
		||||
        generator = await handler.create_embedding(request, raw_request)
 | 
			
		||||
 | 
			
		||||
    if isinstance(generator, ErrorResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump(),
 | 
			
		||||
                            status_code=generator.code)
 | 
			
		||||
    elif isinstance(generator, EmbeddingResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump())
 | 
			
		||||
 | 
			
		||||
    assert_never(generator)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@router.post("/pooling")
 | 
			
		||||
@with_cancellation
 | 
			
		||||
async def create_pooling(request: PoolingRequest, raw_request: Request):
 | 
			
		||||
    handler = pooling(raw_request)
 | 
			
		||||
    if handler is None:
 | 
			
		||||
        return base(raw_request).create_error_response(
 | 
			
		||||
            message="The model does not support Pooling API")
 | 
			
		||||
 | 
			
		||||
    generator = await handler.create_pooling(request, raw_request)
 | 
			
		||||
    if isinstance(generator, ErrorResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump(),
 | 
			
		||||
                            status_code=generator.code)
 | 
			
		||||
    elif isinstance(generator, PoolingResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump())
 | 
			
		||||
 | 
			
		||||
    assert_never(generator)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@router.post("/score")
 | 
			
		||||
@with_cancellation
 | 
			
		||||
async def create_score(request: ScoreRequest, raw_request: Request):
 | 
			
		||||
    handler = score(raw_request)
 | 
			
		||||
    if handler is None:
 | 
			
		||||
        return base(raw_request).create_error_response(
 | 
			
		||||
            message="The model does not support Score API")
 | 
			
		||||
 | 
			
		||||
    generator = await handler.create_score(request, raw_request)
 | 
			
		||||
    if isinstance(generator, ErrorResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump(),
 | 
			
		||||
                            status_code=generator.code)
 | 
			
		||||
    elif isinstance(generator, ScoreResponse):
 | 
			
		||||
        return JSONResponse(content=generator.model_dump())
 | 
			
		||||
 | 
			
		||||
    assert_never(generator)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@router.post("/v1/score")
 | 
			
		||||
@with_cancellation
 | 
			
		||||
async def create_score_v1(request: ScoreRequest, raw_request: Request):
 | 
			
		||||
    logger.warning(
 | 
			
		||||
        "To indicate that Score API is not part of standard OpenAI API, we "
 | 
			
		||||
        "have moved it to `/score`. Please update your client accordingly.")
 | 
			
		||||
 | 
			
		||||
    return await create_score(request, raw_request)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if envs.VLLM_TORCH_PROFILER_DIR:
 | 
			
		||||
    logger.warning(
 | 
			
		||||
        "Torch Profiler is enabled in the API server. This should ONLY be "
 | 
			
		||||
        "used for local development!")
 | 
			
		||||
 | 
			
		||||
    @router.post("/start_profile")
 | 
			
		||||
    async def start_profile(raw_request: Request):
 | 
			
		||||
        logger.info("Starting profiler...")
 | 
			
		||||
        await engine_client(raw_request).start_profile()
 | 
			
		||||
        logger.info("Profiler started.")
 | 
			
		||||
        return Response(status_code=200)
 | 
			
		||||
 | 
			
		||||
    @router.post("/stop_profile")
 | 
			
		||||
    async def stop_profile(raw_request: Request):
 | 
			
		||||
        logger.info("Stopping profiler...")
 | 
			
		||||
        await engine_client(raw_request).stop_profile()
 | 
			
		||||
        logger.info("Profiler stopped.")
 | 
			
		||||
        return Response(status_code=200)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if envs.VLLM_ALLOW_RUNTIME_LORA_UPDATING:
 | 
			
		||||
    logger.warning(
 | 
			
		||||
        "Lora dynamic loading & unloading is enabled in the API server. "
 | 
			
		||||
        "This should ONLY be used for local development!")
 | 
			
		||||
 | 
			
		||||
    @router.post("/v1/load_lora_adapter")
 | 
			
		||||
    async def load_lora_adapter(request: LoadLoraAdapterRequest,
 | 
			
		||||
                                raw_request: Request):
 | 
			
		||||
        for route in [chat, completion, embedding]:
 | 
			
		||||
            handler = route(raw_request)
 | 
			
		||||
            if handler is not None:
 | 
			
		||||
                response = await handler.load_lora_adapter(request)
 | 
			
		||||
                if isinstance(response, ErrorResponse):
 | 
			
		||||
                    return JSONResponse(content=response.model_dump(),
 | 
			
		||||
                                        status_code=response.code)
 | 
			
		||||
 | 
			
		||||
        return Response(status_code=200, content=response)
 | 
			
		||||
 | 
			
		||||
    @router.post("/v1/unload_lora_adapter")
 | 
			
		||||
    async def unload_lora_adapter(request: UnloadLoraAdapterRequest,
 | 
			
		||||
                                  raw_request: Request):
 | 
			
		||||
        for route in [chat, completion, embedding]:
 | 
			
		||||
            handler = route(raw_request)
 | 
			
		||||
            if handler is not None:
 | 
			
		||||
                response = await handler.unload_lora_adapter(request)
 | 
			
		||||
                if isinstance(response, ErrorResponse):
 | 
			
		||||
                    return JSONResponse(content=response.model_dump(),
 | 
			
		||||
                                        status_code=response.code)
 | 
			
		||||
 | 
			
		||||
        return Response(status_code=200, content=response)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def build_app(args: Namespace) -> FastAPI:
 | 
			
		||||
    if args.disable_fastapi_docs:
 | 
			
		||||
        app = FastAPI(openapi_url=None,
 | 
			
		||||
                      docs_url=None,
 | 
			
		||||
                      redoc_url=None,
 | 
			
		||||
                      lifespan=lifespan)
 | 
			
		||||
    else:
 | 
			
		||||
        app = FastAPI(lifespan=lifespan)
 | 
			
		||||
    app.include_router(router)
 | 
			
		||||
    app.root_path = args.root_path
 | 
			
		||||
 | 
			
		||||
    mount_metrics(app)
 | 
			
		||||
 | 
			
		||||
    app.add_middleware(
 | 
			
		||||
        CORSMiddleware,
 | 
			
		||||
| 
						 | 
				
			
			@ -142,18 +563,43 @@ if __name__ == "__main__":
 | 
			
		|||
        allow_headers=args.allowed_headers,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    token = os.environ.get("VLLM_API_KEY") or args.api_key
 | 
			
		||||
    if token:
 | 
			
		||||
    @app.exception_handler(RequestValidationError)
 | 
			
		||||
    async def validation_exception_handler(_, exc):
 | 
			
		||||
        err = ErrorResponse(message=str(exc),
 | 
			
		||||
                            type="BadRequestError",
 | 
			
		||||
                            code=HTTPStatus.BAD_REQUEST)
 | 
			
		||||
        return JSONResponse(err.model_dump(),
 | 
			
		||||
                            status_code=HTTPStatus.BAD_REQUEST)
 | 
			
		||||
 | 
			
		||||
    if token := envs.VLLM_API_KEY or args.api_key:
 | 
			
		||||
 | 
			
		||||
        @app.middleware("http")
 | 
			
		||||
        async def authentication(request: Request, call_next):
 | 
			
		||||
            root_path = "" if args.root_path is None else args.root_path
 | 
			
		||||
            if not request.url.path.startswith(f"{root_path}/v1"):
 | 
			
		||||
            if request.method == "OPTIONS":
 | 
			
		||||
                return await call_next(request)
 | 
			
		||||
            url_path = request.url.path
 | 
			
		||||
            if app.root_path and url_path.startswith(app.root_path):
 | 
			
		||||
                url_path = url_path[len(app.root_path):]
 | 
			
		||||
            if not url_path.startswith("/v1"):
 | 
			
		||||
                return await call_next(request)
 | 
			
		||||
            if request.headers.get("Authorization") != "Bearer " + token:
 | 
			
		||||
                return JSONResponse(content={"error": "Unauthorized"},
 | 
			
		||||
                                    status_code=401)
 | 
			
		||||
            return await call_next(request)
 | 
			
		||||
 | 
			
		||||
    if args.enable_request_id_headers:
 | 
			
		||||
        logger.warning(
 | 
			
		||||
            "CAUTION: Enabling X-Request-Id headers in the API Server. "
 | 
			
		||||
            "This can harm performance at high QPS.")
 | 
			
		||||
 | 
			
		||||
        @app.middleware("http")
 | 
			
		||||
        async def add_request_id(request: Request, call_next):
 | 
			
		||||
            request_id = request.headers.get(
 | 
			
		||||
                "X-Request-Id") or uuid.uuid4().hex
 | 
			
		||||
            response = await call_next(request)
 | 
			
		||||
            response.headers["X-Request-Id"] = request_id
 | 
			
		||||
            return response
 | 
			
		||||
 | 
			
		||||
    for middleware in args.middleware:
 | 
			
		||||
        module_path, object_name = middleware.rsplit(".", 1)
 | 
			
		||||
        imported = getattr(importlib.import_module(module_path), object_name)
 | 
			
		||||
| 
						 | 
				
			
			@ -162,35 +608,174 @@ if __name__ == "__main__":
 | 
			
		|||
        elif inspect.iscoroutinefunction(imported):
 | 
			
		||||
            app.middleware("http")(imported)
 | 
			
		||||
        else:
 | 
			
		||||
            invalidInputError(False, (f"Invalid middleware {middleware}. "
 | 
			
		||||
                              f"Must be a function or a class."))
 | 
			
		||||
            raise ValueError(f"Invalid middleware {middleware}. "
 | 
			
		||||
                             f"Must be a function or a class.")
 | 
			
		||||
 | 
			
		||||
    logger.info("vLLM API server version %s", vllm.__version__)
 | 
			
		||||
    logger.info("args: %s", args)
 | 
			
		||||
    return app
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def init_app_state(
 | 
			
		||||
    engine_client: EngineClient,
 | 
			
		||||
    model_config: ModelConfig,
 | 
			
		||||
    state: State,
 | 
			
		||||
    args: Namespace,
 | 
			
		||||
) -> None:
 | 
			
		||||
    if args.served_model_name is not None:
 | 
			
		||||
        served_model_names = args.served_model_name
 | 
			
		||||
    else:
 | 
			
		||||
        served_model_names = [args.model]
 | 
			
		||||
    engine_args = AsyncEngineArgs.from_cli_args(args)
 | 
			
		||||
    engine = IPEXLLMAsyncLLMEngine.from_engine_args(
 | 
			
		||||
        engine_args, usage_context=UsageContext.OPENAI_API_SERVER,
 | 
			
		||||
        load_in_low_bit=args.load_in_low_bit,
 | 
			
		||||
    )
 | 
			
		||||
    openai_serving_chat = OpenAIServingChat(engine, served_model_names,
 | 
			
		||||
                                            args.response_role,
 | 
			
		||||
                                            args.lora_modules,
 | 
			
		||||
                                            args.chat_template)
 | 
			
		||||
    openai_serving_completion = OpenAIServingCompletion(
 | 
			
		||||
        engine, served_model_names, args.lora_modules)
 | 
			
		||||
 | 
			
		||||
    app.root_path = args.root_path
 | 
			
		||||
    uvicorn.run(app,
 | 
			
		||||
                host=args.host,
 | 
			
		||||
                port=args.port,
 | 
			
		||||
                log_level=args.uvicorn_log_level,
 | 
			
		||||
                timeout_keep_alive=TIMEOUT_KEEP_ALIVE,
 | 
			
		||||
                ssl_keyfile=args.ssl_keyfile,
 | 
			
		||||
                ssl_certfile=args.ssl_certfile,
 | 
			
		||||
                ssl_ca_certs=args.ssl_ca_certs,
 | 
			
		||||
                ssl_cert_reqs=args.ssl_cert_reqs)
 | 
			
		||||
    if args.disable_log_requests:
 | 
			
		||||
        request_logger = None
 | 
			
		||||
    else:
 | 
			
		||||
        request_logger = RequestLogger(max_log_len=args.max_log_len)
 | 
			
		||||
 | 
			
		||||
    base_model_paths = [
 | 
			
		||||
        BaseModelPath(name=name, model_path=args.model)
 | 
			
		||||
        for name in served_model_names
 | 
			
		||||
    ]
 | 
			
		||||
 | 
			
		||||
    state.engine_client = engine_client
 | 
			
		||||
    state.log_stats = not args.disable_log_stats
 | 
			
		||||
 | 
			
		||||
    resolved_chat_template = load_chat_template(args.chat_template)
 | 
			
		||||
    logger.info("Using supplied chat template:\n%s", resolved_chat_template)
 | 
			
		||||
 | 
			
		||||
    state.openai_serving_chat = OpenAIServingChat(
 | 
			
		||||
        engine_client,
 | 
			
		||||
        model_config,
 | 
			
		||||
        base_model_paths,
 | 
			
		||||
        args.response_role,
 | 
			
		||||
        lora_modules=args.lora_modules,
 | 
			
		||||
        prompt_adapters=args.prompt_adapters,
 | 
			
		||||
        request_logger=request_logger,
 | 
			
		||||
        chat_template=resolved_chat_template,
 | 
			
		||||
        chat_template_content_format=args.chat_template_content_format,
 | 
			
		||||
        return_tokens_as_token_ids=args.return_tokens_as_token_ids,
 | 
			
		||||
        enable_auto_tools=args.enable_auto_tool_choice,
 | 
			
		||||
        tool_parser=args.tool_call_parser,
 | 
			
		||||
        enable_prompt_tokens_details=args.enable_prompt_tokens_details,
 | 
			
		||||
    ) if model_config.runner_type == "generate" else None
 | 
			
		||||
    state.openai_serving_completion = OpenAIServingCompletion(
 | 
			
		||||
        engine_client,
 | 
			
		||||
        model_config,
 | 
			
		||||
        base_model_paths,
 | 
			
		||||
        lora_modules=args.lora_modules,
 | 
			
		||||
        prompt_adapters=args.prompt_adapters,
 | 
			
		||||
        request_logger=request_logger,
 | 
			
		||||
        return_tokens_as_token_ids=args.return_tokens_as_token_ids,
 | 
			
		||||
    ) if model_config.runner_type == "generate" else None
 | 
			
		||||
    state.openai_serving_pooling = OpenAIServingPooling(
 | 
			
		||||
        engine_client,
 | 
			
		||||
        model_config,
 | 
			
		||||
        base_model_paths,
 | 
			
		||||
        request_logger=request_logger,
 | 
			
		||||
        chat_template=resolved_chat_template,
 | 
			
		||||
        chat_template_content_format=args.chat_template_content_format,
 | 
			
		||||
    ) if model_config.runner_type == "pooling" else None
 | 
			
		||||
    state.openai_serving_embedding = OpenAIServingEmbedding(
 | 
			
		||||
        engine_client,
 | 
			
		||||
        model_config,
 | 
			
		||||
        base_model_paths,
 | 
			
		||||
        request_logger=request_logger,
 | 
			
		||||
        chat_template=resolved_chat_template,
 | 
			
		||||
        chat_template_content_format=args.chat_template_content_format,
 | 
			
		||||
    ) if model_config.task == "embed" else None
 | 
			
		||||
    state.openai_serving_scores = OpenAIServingScores(
 | 
			
		||||
        engine_client,
 | 
			
		||||
        model_config,
 | 
			
		||||
        base_model_paths,
 | 
			
		||||
        request_logger=request_logger
 | 
			
		||||
    ) if model_config.task == "score" else None
 | 
			
		||||
    state.openai_serving_tokenization = OpenAIServingTokenization(
 | 
			
		||||
        engine_client,
 | 
			
		||||
        model_config,
 | 
			
		||||
        base_model_paths,
 | 
			
		||||
        lora_modules=args.lora_modules,
 | 
			
		||||
        request_logger=request_logger,
 | 
			
		||||
        chat_template=resolved_chat_template,
 | 
			
		||||
        chat_template_content_format=args.chat_template_content_format,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def create_server_socket(addr: Tuple[str, int]) -> socket.socket:
 | 
			
		||||
    family = socket.AF_INET
 | 
			
		||||
    if is_valid_ipv6_address(addr[0]):
 | 
			
		||||
        family = socket.AF_INET6
 | 
			
		||||
 | 
			
		||||
    sock = socket.socket(family=family, type=socket.SOCK_STREAM)
 | 
			
		||||
    sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 | 
			
		||||
    sock.bind(addr)
 | 
			
		||||
 | 
			
		||||
    return sock
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
async def run_server(args, **uvicorn_kwargs) -> None:
 | 
			
		||||
    logger.info("vLLM API server version %s", VLLM_VERSION)
 | 
			
		||||
    logger.info("args: %s", args)
 | 
			
		||||
 | 
			
		||||
    if args.tool_parser_plugin and len(args.tool_parser_plugin) > 3:
 | 
			
		||||
        ToolParserManager.import_tool_parser(args.tool_parser_plugin)
 | 
			
		||||
 | 
			
		||||
    valide_tool_parses = ToolParserManager.tool_parsers.keys()
 | 
			
		||||
    if args.enable_auto_tool_choice \
 | 
			
		||||
        and args.tool_call_parser not in valide_tool_parses:
 | 
			
		||||
        raise KeyError(f"invalid tool call parser: {args.tool_call_parser} "
 | 
			
		||||
                       f"(chose from {{ {','.join(valide_tool_parses)} }})")
 | 
			
		||||
 | 
			
		||||
    # workaround to make sure that we bind the port before the engine is set up.
 | 
			
		||||
    # This avoids race conditions with ray.
 | 
			
		||||
    # see https://github.com/vllm-project/vllm/issues/8204
 | 
			
		||||
    sock_addr = (args.host or "", args.port)
 | 
			
		||||
    sock = create_server_socket(sock_addr)
 | 
			
		||||
 | 
			
		||||
    # workaround to avoid footguns where uvicorn drops requests with too
 | 
			
		||||
    # many concurrent requests active
 | 
			
		||||
    set_ulimit()
 | 
			
		||||
 | 
			
		||||
    def signal_handler(*_) -> None:
 | 
			
		||||
        # Interrupt server on sigterm while initializing
 | 
			
		||||
        raise KeyboardInterrupt("terminated")
 | 
			
		||||
 | 
			
		||||
    signal.signal(signal.SIGTERM, signal_handler)
 | 
			
		||||
 | 
			
		||||
    async with build_async_engine_client(args) as engine_client:
 | 
			
		||||
        app = build_app(args)
 | 
			
		||||
 | 
			
		||||
        model_config = await engine_client.get_model_config()
 | 
			
		||||
        init_app_state(engine_client, model_config, app.state, args)
 | 
			
		||||
 | 
			
		||||
        shutdown_task = await serve_http(
 | 
			
		||||
            app,
 | 
			
		||||
            host=args.host,
 | 
			
		||||
            port=args.port,
 | 
			
		||||
            log_level=args.uvicorn_log_level,
 | 
			
		||||
            timeout_keep_alive=TIMEOUT_KEEP_ALIVE,
 | 
			
		||||
            ssl_keyfile=args.ssl_keyfile,
 | 
			
		||||
            ssl_certfile=args.ssl_certfile,
 | 
			
		||||
            ssl_ca_certs=args.ssl_ca_certs,
 | 
			
		||||
            ssl_cert_reqs=args.ssl_cert_reqs,
 | 
			
		||||
            **uvicorn_kwargs,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    # NB: Await server shutdown only after the backend context is exited
 | 
			
		||||
    await shutdown_task
 | 
			
		||||
 | 
			
		||||
    sock.close()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # NOTE(simon):
 | 
			
		||||
    # This section should be in sync with vllm/scripts.py for CLI entrypoints.
 | 
			
		||||
    parser = FlexibleArgumentParser(
 | 
			
		||||
        description="vLLM OpenAI-Compatible RESTful API server.")
 | 
			
		||||
    parser = make_arg_parser(parser)
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--load-in-low-bit",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default="sym_int4",
 | 
			
		||||
        help="Low-bit quantization for IPEX-LLM models")
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    validate_parsed_serve_args(args)
 | 
			
		||||
 | 
			
		||||
    uvloop.run(run_server(args))
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										277
									
								
								python/llm/src/ipex_llm/vllm/cpu/entrypoints/openai/cli_args.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										277
									
								
								python/llm/src/ipex_llm/vllm/cpu/entrypoints/openai/cli_args.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,277 @@
 | 
			
		|||
"""
 | 
			
		||||
This file contains the command line arguments for the vLLM's
 | 
			
		||||
OpenAI-compatible server. It is kept in a separate file for documentation
 | 
			
		||||
purposes.
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import json
 | 
			
		||||
import ssl
 | 
			
		||||
from typing import List, Optional, Sequence, Union, get_args
 | 
			
		||||
 | 
			
		||||
from vllm.engine.arg_utils import AsyncEngineArgs, nullable_str
 | 
			
		||||
from vllm.entrypoints.chat_utils import (ChatTemplateContentFormatOption,
 | 
			
		||||
                                         validate_chat_template)
 | 
			
		||||
from vllm.entrypoints.openai.serving_engine import (LoRAModulePath,
 | 
			
		||||
                                                    PromptAdapterPath)
 | 
			
		||||
from vllm.entrypoints.openai.tool_parsers import ToolParserManager
 | 
			
		||||
from vllm.utils import FlexibleArgumentParser
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class LoRAParserAction(argparse.Action):
 | 
			
		||||
 | 
			
		||||
    def __call__(
 | 
			
		||||
        self,
 | 
			
		||||
        parser: argparse.ArgumentParser,
 | 
			
		||||
        namespace: argparse.Namespace,
 | 
			
		||||
        values: Optional[Union[str, Sequence[str]]],
 | 
			
		||||
        option_string: Optional[str] = None,
 | 
			
		||||
    ):
 | 
			
		||||
        if values is None:
 | 
			
		||||
            values = []
 | 
			
		||||
        if isinstance(values, str):
 | 
			
		||||
            raise TypeError("Expected values to be a list")  # noqa
 | 
			
		||||
 | 
			
		||||
        lora_list: List[LoRAModulePath] = []
 | 
			
		||||
        for item in values:
 | 
			
		||||
            if item in [None, '']:  # Skip if item is None or empty string
 | 
			
		||||
                continue
 | 
			
		||||
            if '=' in item and ',' not in item:  # Old format: name=path
 | 
			
		||||
                name, path = item.split('=')
 | 
			
		||||
                lora_list.append(LoRAModulePath(name, path))
 | 
			
		||||
            else:  # Assume JSON format
 | 
			
		||||
                try:
 | 
			
		||||
                    lora_dict = json.loads(item)
 | 
			
		||||
                    lora = LoRAModulePath(**lora_dict)
 | 
			
		||||
                    lora_list.append(lora)
 | 
			
		||||
                except json.JSONDecodeError:
 | 
			
		||||
                    parser.error(
 | 
			
		||||
                        f"Invalid JSON format for --lora-modules: {item}")
 | 
			
		||||
                except TypeError as e:
 | 
			
		||||
                    parser.error(
 | 
			
		||||
                        f"Invalid fields for --lora-modules: {item} - {str(e)}"
 | 
			
		||||
                    )
 | 
			
		||||
        setattr(namespace, self.dest, lora_list)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class PromptAdapterParserAction(argparse.Action):
 | 
			
		||||
 | 
			
		||||
    def __call__(
 | 
			
		||||
        self,
 | 
			
		||||
        parser: argparse.ArgumentParser,
 | 
			
		||||
        namespace: argparse.Namespace,
 | 
			
		||||
        values: Optional[Union[str, Sequence[str]]],
 | 
			
		||||
        option_string: Optional[str] = None,
 | 
			
		||||
    ):
 | 
			
		||||
        if values is None:
 | 
			
		||||
            values = []
 | 
			
		||||
        if isinstance(values, str):
 | 
			
		||||
            raise TypeError("Expected values to be a list")  # noqa
 | 
			
		||||
 | 
			
		||||
        adapter_list: List[PromptAdapterPath] = []
 | 
			
		||||
        for item in values:
 | 
			
		||||
            name, path = item.split('=')
 | 
			
		||||
            adapter_list.append(PromptAdapterPath(name, path))
 | 
			
		||||
        setattr(namespace, self.dest, adapter_list)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def make_arg_parser(parser: FlexibleArgumentParser) -> FlexibleArgumentParser:
 | 
			
		||||
    parser.add_argument("--host",
 | 
			
		||||
                        type=nullable_str,
 | 
			
		||||
                        default=None,
 | 
			
		||||
                        help="host name")
 | 
			
		||||
    parser.add_argument("--port", type=int, default=8000, help="port number")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--uvicorn-log-level",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default="info",
 | 
			
		||||
        choices=['debug', 'info', 'warning', 'error', 'critical', 'trace'],
 | 
			
		||||
        help="log level for uvicorn")
 | 
			
		||||
    parser.add_argument("--allow-credentials",
 | 
			
		||||
                        action="store_true",
 | 
			
		||||
                        help="allow credentials")
 | 
			
		||||
    parser.add_argument("--allowed-origins",
 | 
			
		||||
                        type=json.loads,
 | 
			
		||||
                        default=["*"],
 | 
			
		||||
                        help="allowed origins")
 | 
			
		||||
    parser.add_argument("--allowed-methods",
 | 
			
		||||
                        type=json.loads,
 | 
			
		||||
                        default=["*"],
 | 
			
		||||
                        help="allowed methods")
 | 
			
		||||
    parser.add_argument("--allowed-headers",
 | 
			
		||||
                        type=json.loads,
 | 
			
		||||
                        default=["*"],
 | 
			
		||||
                        help="allowed headers")
 | 
			
		||||
    parser.add_argument("--api-key",
 | 
			
		||||
                        type=nullable_str,
 | 
			
		||||
                        default=None,
 | 
			
		||||
                        help="If provided, the server will require this key "
 | 
			
		||||
                        "to be presented in the header.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--lora-modules",
 | 
			
		||||
        type=nullable_str,
 | 
			
		||||
        default=None,
 | 
			
		||||
        nargs='+',
 | 
			
		||||
        action=LoRAParserAction,
 | 
			
		||||
        help="LoRA module configurations in either 'name=path' format"
 | 
			
		||||
        "or JSON format. "
 | 
			
		||||
        "Example (old format): 'name=path' "
 | 
			
		||||
        "Example (new format): "
 | 
			
		||||
        "'{\"name\": \"name\", \"local_path\": \"path\", "
 | 
			
		||||
        "\"base_model_name\": \"id\"}'")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--prompt-adapters",
 | 
			
		||||
        type=nullable_str,
 | 
			
		||||
        default=None,
 | 
			
		||||
        nargs='+',
 | 
			
		||||
        action=PromptAdapterParserAction,
 | 
			
		||||
        help="Prompt adapter configurations in the format name=path. "
 | 
			
		||||
        "Multiple adapters can be specified.")
 | 
			
		||||
    parser.add_argument("--chat-template",
 | 
			
		||||
                        type=nullable_str,
 | 
			
		||||
                        default=None,
 | 
			
		||||
                        help="The file path to the chat template, "
 | 
			
		||||
                        "or the template in single-line form "
 | 
			
		||||
                        "for the specified model")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        '--chat-template-content-format',
 | 
			
		||||
        type=str,
 | 
			
		||||
        default="auto",
 | 
			
		||||
        choices=get_args(ChatTemplateContentFormatOption),
 | 
			
		||||
        help='The format to render message content within a chat template.'
 | 
			
		||||
        '\n\n'
 | 
			
		||||
        '* "string" will render the content as a string. '
 | 
			
		||||
        'Example: "Hello World"\n'
 | 
			
		||||
        '* "openai" will render the content as a list of dictionaries, '
 | 
			
		||||
        'similar to OpenAI schema. '
 | 
			
		||||
        'Example: [{"type": "text", "text": "Hello world!"}]')
 | 
			
		||||
    parser.add_argument("--response-role",
 | 
			
		||||
                        type=nullable_str,
 | 
			
		||||
                        default="assistant",
 | 
			
		||||
                        help="The role name to return if "
 | 
			
		||||
                        "`request.add_generation_prompt=true`.")
 | 
			
		||||
    parser.add_argument("--ssl-keyfile",
 | 
			
		||||
                        type=nullable_str,
 | 
			
		||||
                        default=None,
 | 
			
		||||
                        help="The file path to the SSL key file")
 | 
			
		||||
    parser.add_argument("--ssl-certfile",
 | 
			
		||||
                        type=nullable_str,
 | 
			
		||||
                        default=None,
 | 
			
		||||
                        help="The file path to the SSL cert file")
 | 
			
		||||
    parser.add_argument("--ssl-ca-certs",
 | 
			
		||||
                        type=nullable_str,
 | 
			
		||||
                        default=None,
 | 
			
		||||
                        help="The CA certificates file")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--ssl-cert-reqs",
 | 
			
		||||
        type=int,
 | 
			
		||||
        default=int(ssl.CERT_NONE),
 | 
			
		||||
        help="Whether client certificate is required (see stdlib ssl module's)"
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--root-path",
 | 
			
		||||
        type=nullable_str,
 | 
			
		||||
        default=None,
 | 
			
		||||
        help="FastAPI root_path when app is behind a path based routing proxy")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--middleware",
 | 
			
		||||
        type=nullable_str,
 | 
			
		||||
        action="append",
 | 
			
		||||
        default=[],
 | 
			
		||||
        help="Additional ASGI middleware to apply to the app. "
 | 
			
		||||
        "We accept multiple --middleware arguments. "
 | 
			
		||||
        "The value should be an import path. "
 | 
			
		||||
        "If a function is provided, vLLM will add it to the server "
 | 
			
		||||
        "using @app.middleware('http'). "
 | 
			
		||||
        "If a class is provided, vLLM will add it to the server "
 | 
			
		||||
        "using app.add_middleware(). ")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--return-tokens-as-token-ids",
 | 
			
		||||
        action="store_true",
 | 
			
		||||
        help="When --max-logprobs is specified, represents single tokens as "
 | 
			
		||||
        "strings of the form 'token_id:{token_id}' so that tokens that "
 | 
			
		||||
        "are not JSON-encodable can be identified.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--disable-frontend-multiprocessing",
 | 
			
		||||
        action="store_true",
 | 
			
		||||
        help="If specified, will run the OpenAI frontend server in the same "
 | 
			
		||||
        "process as the model serving engine.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--enable-request-id-headers",
 | 
			
		||||
        action="store_true",
 | 
			
		||||
        help="If specified, API server will add X-Request-Id header to "
 | 
			
		||||
        "responses. Caution: this hurts performance at high QPS.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--enable-auto-tool-choice",
 | 
			
		||||
        action="store_true",
 | 
			
		||||
        default=False,
 | 
			
		||||
        help="Enable auto tool choice for supported models. Use --tool-call-parser"
 | 
			
		||||
        " to specify which parser to use")
 | 
			
		||||
 | 
			
		||||
    valid_tool_parsers = ToolParserManager.tool_parsers.keys()
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--tool-call-parser",
 | 
			
		||||
        type=str,
 | 
			
		||||
        metavar="{" + ",".join(valid_tool_parsers) + "} or name registered in "
 | 
			
		||||
        "--tool-parser-plugin",
 | 
			
		||||
        default=None,
 | 
			
		||||
        help="Select the tool call parser depending on the model that you're using."
 | 
			
		||||
        " This is used to parse the model-generated tool call into OpenAI API "
 | 
			
		||||
        "format. Required for --enable-auto-tool-choice.")
 | 
			
		||||
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--tool-parser-plugin",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default="",
 | 
			
		||||
        help="Special the tool parser plugin write to parse the model-generated tool"
 | 
			
		||||
        " into OpenAI API format, the name register in this plugin can be used "
 | 
			
		||||
        "in --tool-call-parser.")
 | 
			
		||||
 | 
			
		||||
    parser = AsyncEngineArgs.add_cli_args(parser)
 | 
			
		||||
 | 
			
		||||
    parser.add_argument('--max-log-len',
 | 
			
		||||
                        type=int,
 | 
			
		||||
                        default=None,
 | 
			
		||||
                        help='Max number of prompt characters or prompt '
 | 
			
		||||
                        'ID numbers being printed in log.'
 | 
			
		||||
                        '\n\nDefault: Unlimited')
 | 
			
		||||
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--disable-fastapi-docs",
 | 
			
		||||
        action='store_true',
 | 
			
		||||
        default=False,
 | 
			
		||||
        help="Disable FastAPI's OpenAPI schema, Swagger UI, and ReDoc endpoint"
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--enable-prompt-tokens-details",
 | 
			
		||||
        action='store_true',
 | 
			
		||||
        default=False,
 | 
			
		||||
        help="If set to True, enable prompt_tokens_details in usage.")
 | 
			
		||||
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--load-in-low-bit",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default="sym_int4",
 | 
			
		||||
        help="Low-bit quantization for IPEX-LLM models")
 | 
			
		||||
 | 
			
		||||
    return parser
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def validate_parsed_serve_args(args: argparse.Namespace):
 | 
			
		||||
    """Quick checks for model serve args that raise prior to loading."""  # noqa
 | 
			
		||||
    if hasattr(args, "subparser") and args.subparser != "serve":
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    # Ensure that the chat template is valid; raises if it likely isn't
 | 
			
		||||
    validate_chat_template(args.chat_template)
 | 
			
		||||
 | 
			
		||||
    # Enable auto tool needs a tool call parser to be valid
 | 
			
		||||
    if args.enable_auto_tool_choice and not args.tool_call_parser:
 | 
			
		||||
        raise TypeError("Error: --enable-auto-tool-choice requires "  # noqa
 | 
			
		||||
                        "--tool-call-parser")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def create_parser_for_docs() -> FlexibleArgumentParser:
 | 
			
		||||
    parser_for_docs = FlexibleArgumentParser(
 | 
			
		||||
        prog="-m vllm.entrypoints.openai.api_server")
 | 
			
		||||
    return make_arg_parser(parser_for_docs)
 | 
			
		||||
							
								
								
									
										23
									
								
								python/llm/src/ipex_llm/vllm/cpu/ipex_llm_v1_wrapper.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										23
									
								
								python/llm/src/ipex_llm/vllm/cpu/ipex_llm_v1_wrapper.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,23 @@
 | 
			
		|||
from vllm.logger import init_logger
 | 
			
		||||
from vllm.v1.executor.ray_utils import RayWorkerWrapper
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = init_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class IPEXLLMV1Wrapper(RayWorkerWrapper):
 | 
			
		||||
    def __init__(self, load_in_low_bit="sym_int4", *args, **kwargs) -> None:
 | 
			
		||||
        super().__init__(*args, **kwargs)
 | 
			
		||||
        from ipex_llm.vllm.cpu.model_convert import _ipex_llm_convert
 | 
			
		||||
        _ipex_llm_convert(load_in_low_bit=load_in_low_bit)
 | 
			
		||||
        self.compiled_dag_cuda_device_set = False
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_ipex_llm_v1_wrapper(load_in_low_bit):
 | 
			
		||||
    # The reason why we not using functools.partial is that
 | 
			
		||||
    # ray seems not work well with it.
 | 
			
		||||
    class WrapperWithLoadBit(IPEXLLMV1Wrapper):
 | 
			
		||||
        def __init__(self, *args, **kwargs) -> None:
 | 
			
		||||
            super().__init__(load_in_low_bit=load_in_low_bit, *args, **kwargs)
 | 
			
		||||
 | 
			
		||||
    return WrapperWithLoadBit
 | 
			
		||||
							
								
								
									
										24
									
								
								python/llm/src/ipex_llm/vllm/cpu/ipex_llm_wrapper.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										24
									
								
								python/llm/src/ipex_llm/vllm/cpu/ipex_llm_wrapper.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,24 @@
 | 
			
		|||
from vllm.logger import init_logger
 | 
			
		||||
from vllm.executor.ray_utils import RayWorkerWrapper
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = init_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class IPEXLLMWrapper(RayWorkerWrapper):
 | 
			
		||||
    def __init__(self, load_in_low_bit="sym_int4", *args, **kwargs) -> None:
 | 
			
		||||
        super().__init__(*args, **kwargs)
 | 
			
		||||
        from ipex_llm.vllm.cpu.model_convert import _ipex_llm_convert
 | 
			
		||||
        _ipex_llm_convert(load_in_low_bit=load_in_low_bit)
 | 
			
		||||
        self.compiled_dag_cuda_device_set = False
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_ipex_llm_wrapper(load_in_low_bit):
 | 
			
		||||
    # The reason why we not using functools.partial is that
 | 
			
		||||
    # ray seems not work well with it.
 | 
			
		||||
    class WrapperWithLoadBit(IPEXLLMWrapper):
 | 
			
		||||
        def __init__(self, *args, **kwargs) -> None:
 | 
			
		||||
            super().__init__(load_in_low_bit=load_in_low_bit, *args, **kwargs)
 | 
			
		||||
 | 
			
		||||
    # a = functools.partial(IPEXLLMWrapper, load_in_low_bit=load_in_low_bit)
 | 
			
		||||
    return WrapperWithLoadBit
 | 
			
		||||
| 
						 | 
				
			
			@ -14,259 +14,152 @@
 | 
			
		|||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
import torch
 | 
			
		||||
from typing import Optional, Union
 | 
			
		||||
from vllm.distributed import tensor_model_parallel_gather, tensor_model_parallel_all_gather
 | 
			
		||||
from vllm.logger import init_logger
 | 
			
		||||
from vllm.model_executor.model_loader import get_model
 | 
			
		||||
from vllm.model_executor.model_loader.utils import get_model_architecture
 | 
			
		||||
from vllm.model_executor.models.llama import LlamaMLP, LlamaAttention
 | 
			
		||||
from vllm.model_executor.models.qwen2 import Qwen2MLP, Qwen2Attention
 | 
			
		||||
from vllm.model_executor.models.qwen import QWenMLP, QWenAttention
 | 
			
		||||
from vllm.model_executor.models.llama import LlamaMLP, LlamaAttention, LlamaForCausalLM
 | 
			
		||||
from vllm.model_executor.models.qwen2 import Qwen2MLP, Qwen2Attention, Qwen2ForCausalLM
 | 
			
		||||
from vllm.model_executor.models.qwen import QWenMLP, QWenAttention, QWenLMHeadModel
 | 
			
		||||
from vllm.model_executor.models.baichuan import BaiChuanMLP, BaiChuanAttention
 | 
			
		||||
from vllm.model_executor.models.chatglm import GLMMLP, GLMAttention
 | 
			
		||||
from vllm.attention import Attention, AttentionMetadata
 | 
			
		||||
from vllm.lora.worker_manager import LRUCacheWorkerLoRAManager
 | 
			
		||||
from vllm.model_executor.models.baichuan import BaiChuanBaseForCausalLM
 | 
			
		||||
from vllm.model_executor.models.chatglm import GLMMLP, GLMAttention, ChatGLMForCausalLM
 | 
			
		||||
from vllm.model_executor.model_loader import get_model
 | 
			
		||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
 | 
			
		||||
    VocabParallelEmbedding)
 | 
			
		||||
from vllm.attention import AttentionMetadata
 | 
			
		||||
from vllm.config import DeviceConfig
 | 
			
		||||
from vllm.logger import init_logger
 | 
			
		||||
 | 
			
		||||
from vllm._C import ops
 | 
			
		||||
from ipex_llm.utils.common import invalidInputError
 | 
			
		||||
from typing import List, Optional, Tuple, Union
 | 
			
		||||
 | 
			
		||||
logger = init_logger(__name__)
 | 
			
		||||
from typing import Tuple
 | 
			
		||||
from ipex_llm.transformers.low_bit_linear import LowBitLinear
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _MLP_forward(self, x):
 | 
			
		||||
    gate_up = self.gate_up_proj(x)
 | 
			
		||||
    x = self.act_fn(gate_up)
 | 
			
		||||
    x = self.down_proj(x)
 | 
			
		||||
    return x
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _Attention_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    positions: torch.Tensor,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    kv_cache: torch.Tensor,
 | 
			
		||||
    attn_metadata: AttentionMetadata,
 | 
			
		||||
) -> torch.Tensor:
 | 
			
		||||
    qkv = self.qkv_proj(hidden_states).to(dtype=kv_cache.dtype)
 | 
			
		||||
    q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
 | 
			
		||||
    q, k = self.rotary_emb(positions, q, k)
 | 
			
		||||
    attn_output = self.attn(q, k, v, kv_cache, attn_metadata, self.kv_scale)
 | 
			
		||||
    output = self.o_proj(attn_output)
 | 
			
		||||
    return output
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _QWen_Attention_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    positions: torch.Tensor,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    kv_cache: Tuple[torch.Tensor, torch.Tensor],
 | 
			
		||||
    attn_metadata: AttentionMetadata,
 | 
			
		||||
) -> torch.Tensor:
 | 
			
		||||
    qkv = self.c_attn(hidden_states).to(dtype=kv_cache.dtype)
 | 
			
		||||
    q, k, v = qkv.chunk(chunks=3, dim=-1)
 | 
			
		||||
    q, k = self.rotary_emb(positions, q, k)
 | 
			
		||||
    attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
 | 
			
		||||
    output = self.c_proj(attn_output)
 | 
			
		||||
    return output
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _QWen_MLP_forward(self, x):
 | 
			
		||||
    gate_up = self.gate_up_proj(x)
 | 
			
		||||
    x = self.act_fn(gate_up)
 | 
			
		||||
    x = self.c_proj(x)
 | 
			
		||||
    return x
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _Qwen2_Attention_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    positions: torch.Tensor,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    kv_cache: torch.Tensor,
 | 
			
		||||
    attn_metadata: AttentionMetadata,
 | 
			
		||||
) -> torch.Tensor:
 | 
			
		||||
    qkv = self.qkv_proj(hidden_states).to(dtype=kv_cache.dtype)
 | 
			
		||||
    q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
 | 
			
		||||
    q, k = self.rotary_emb(positions, q, k)
 | 
			
		||||
    attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
 | 
			
		||||
    output = self.o_proj(attn_output)
 | 
			
		||||
    return output
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _ChatGLM_MLP_forward(self, hidden_states):
 | 
			
		||||
    # [s, b, 4hp]
 | 
			
		||||
    intermediate_parallel = self.dense_h_to_4h(hidden_states)
 | 
			
		||||
    intermediate_parallel = self.activation_func(intermediate_parallel)
 | 
			
		||||
    # [s, b, h]
 | 
			
		||||
    output = self.dense_4h_to_h(intermediate_parallel)
 | 
			
		||||
    return output
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _Baichuan_Attention_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    positions: torch.Tensor,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    kv_cache: Tuple[torch.Tensor, torch.Tensor],
 | 
			
		||||
    attn_metadata: AttentionMetadata,
 | 
			
		||||
) -> torch.Tensor:
 | 
			
		||||
    qkv = self.W_pack(hidden_states).to(dtype=kv_cache.dtype)
 | 
			
		||||
    q, k, v = qkv.chunk(chunks=3, dim=-1)
 | 
			
		||||
    if self.postion_embedding != "ALIBI":
 | 
			
		||||
        q, k = self.rotary_emb(positions, q, k)
 | 
			
		||||
    attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
 | 
			
		||||
    output = self.o_proj(attn_output)
 | 
			
		||||
    return output
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _ChatGLM_Attention_forward(
 | 
			
		||||
def _sample_get_logits(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    position_ids: torch.Tensor,
 | 
			
		||||
    kv_cache: Tuple[torch.Tensor, torch.Tensor],
 | 
			
		||||
    attn_metadata: AttentionMetadata,
 | 
			
		||||
    lm_head: Union[VocabParallelEmbedding, LowBitLinear],
 | 
			
		||||
    embedding_bias: Optional[torch.Tensor],
 | 
			
		||||
) -> torch.Tensor:
 | 
			
		||||
    qkv = self.query_key_value(hidden_states).to(dtype=kv_cache.dtype)
 | 
			
		||||
    q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
 | 
			
		||||
    q, k = self.rotary_emb(position_ids, q, k)
 | 
			
		||||
    context_layer = self.attn(
 | 
			
		||||
        q,
 | 
			
		||||
        k,
 | 
			
		||||
        v,
 | 
			
		||||
        kv_cache,
 | 
			
		||||
        attn_metadata,
 | 
			
		||||
    )
 | 
			
		||||
    attn_output = self.dense(context_layer)
 | 
			
		||||
    return attn_output
 | 
			
		||||
 | 
			
		||||
_REPLACED_MLP_LAYERS = {
 | 
			
		||||
    LlamaMLP: _MLP_forward,
 | 
			
		||||
    Qwen2MLP: _MLP_forward,
 | 
			
		||||
    BaiChuanMLP: _MLP_forward,
 | 
			
		||||
    # QWenMLP: _QWen_MLP_forward,
 | 
			
		||||
    GLMMLP: _ChatGLM_MLP_forward
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
_REPLACED_ATTENTION_LAYERS = {
 | 
			
		||||
    LlamaAttention: _Attention_forward,
 | 
			
		||||
    Qwen2Attention: _Qwen2_Attention_forward,
 | 
			
		||||
    # QWenAttention: _QWen_Attention_forward,
 | 
			
		||||
    BaiChuanAttention: _Baichuan_Attention_forward,
 | 
			
		||||
    GLMAttention: _ChatGLM_Attention_forward
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
_IPEX_LLM_SUPPORTED_MODELS = [
 | 
			
		||||
    "LlamaForCausalLM",
 | 
			
		||||
    "BaichuanForCausalLM",
 | 
			
		||||
    "ChatGLMForCausalLM",
 | 
			
		||||
    "Qwen2ForCausalLM",
 | 
			
		||||
]
 | 
			
		||||
    # HINT: we do not support other types of quantization for now
 | 
			
		||||
    # TODO: we may encounter tie-word-embedding problems
 | 
			
		||||
    if isinstance(lm_head, VocabParallelEmbedding):
 | 
			
		||||
        logits = lm_head.linear_method.apply(lm_head,
 | 
			
		||||
                                             hidden_states,
 | 
			
		||||
                                             bias=embedding_bias)
 | 
			
		||||
    else:
 | 
			
		||||
        logits = lm_head(hidden_states)
 | 
			
		||||
        if embedding_bias is not None:
 | 
			
		||||
            logits += embedding_bias
 | 
			
		||||
    if self.use_gather:
 | 
			
		||||
        logits = tensor_model_parallel_gather(logits)
 | 
			
		||||
    else:
 | 
			
		||||
        logits = tensor_model_parallel_all_gather(logits)
 | 
			
		||||
    if logits is not None:
 | 
			
		||||
        logits = logits[:, : self.org_vocab_size]
 | 
			
		||||
    return logits
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _model_mlp_convert():
 | 
			
		||||
    for module, replaced_func in _REPLACED_MLP_LAYERS.items():
 | 
			
		||||
        setattr(module, "forward", replaced_func)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _model_attention_convert():
 | 
			
		||||
    for module, replaced_func in _REPLACED_ATTENTION_LAYERS.items():
 | 
			
		||||
        setattr(module, "forward", replaced_func)
 | 
			
		||||
def _model_sample_convert():
 | 
			
		||||
    from vllm.model_executor.layers.logits_processor import LogitsProcessor
 | 
			
		||||
    setattr(LogitsProcessor, "_get_logits", _sample_get_logits)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _ipex_llm_convert(load_in_low_bit):
 | 
			
		||||
    if load_in_low_bit is None:
 | 
			
		||||
        return
 | 
			
		||||
    from vllm.worker.cpu_model_runner import CPUModelRunner
 | 
			
		||||
    import vllm.model_executor.model_loader as model_loader
 | 
			
		||||
    from ipex_llm.vllm.cpu.ipex_llm_wrapper import get_ipex_llm_wrapper
 | 
			
		||||
    from ipex_llm.vllm.cpu.ipex_llm_v1_wrapper import get_ipex_llm_v1_wrapper
 | 
			
		||||
    import vllm.executor.ray_utils as ray_utils_v0
 | 
			
		||||
    import vllm.v1.executor.ray_utils as ray_utils_v1
 | 
			
		||||
    setattr(CPUModelRunner, "load_model", get_load_function(load_in_low_bit))
 | 
			
		||||
 | 
			
		||||
    from vllm.model_executor.layers.rotary_embedding import RotaryEmbedding
 | 
			
		||||
    setattr(RotaryEmbedding, "forward", _ipex_llm_rotary_embedding_forward)
 | 
			
		||||
    from vllm.model_executor.layers.layernorm import RMSNorm
 | 
			
		||||
    setattr(RMSNorm, "forward", _ipex_llm_rmsnorm_forward)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _ipex_llm_rotary_embedding_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    positions: torch.Tensor,
 | 
			
		||||
    query: torch.Tensor,
 | 
			
		||||
    key: torch.Tensor,
 | 
			
		||||
    offsets: Optional[torch.Tensor] = None,
 | 
			
		||||
) -> Tuple[torch.Tensor, torch.Tensor]:
 | 
			
		||||
    self.cos_sin_cache = self.cos_sin_cache.to(positions.device, dtype=query.dtype)
 | 
			
		||||
 | 
			
		||||
    # ops.rotary_embedding()/batched_rotary_embedding()
 | 
			
		||||
    # are in-place operations that update the query and key tensors.
 | 
			
		||||
    if offsets is not None:
 | 
			
		||||
        ops.batched_rotary_embedding(positions, query, key, self.head_size,
 | 
			
		||||
                                     self.cos_sin_cache,
 | 
			
		||||
                                     self.is_neox_style, self.rotary_dim,
 | 
			
		||||
                                     offsets)
 | 
			
		||||
    else:
 | 
			
		||||
        ops.rotary_embedding(positions, query, key, self.head_size,
 | 
			
		||||
                             self.cos_sin_cache, self.is_neox_style)
 | 
			
		||||
    return query, key
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _ipex_llm_rmsnorm_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    x: torch.Tensor,
 | 
			
		||||
    residual: Optional[torch.Tensor] = None,
 | 
			
		||||
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
 | 
			
		||||
    x = x.to(dtype=self.weight.data.dtype)
 | 
			
		||||
    if residual is not None:
 | 
			
		||||
        residual = residual.to(dtype=self.weight.data.dtype)
 | 
			
		||||
        ops.fused_add_rms_norm(
 | 
			
		||||
            x,
 | 
			
		||||
            residual,
 | 
			
		||||
            self.weight.data,
 | 
			
		||||
            self.variance_epsilon,
 | 
			
		||||
        )
 | 
			
		||||
        return x, residual
 | 
			
		||||
    out = torch.empty_like(x)
 | 
			
		||||
    ops.rms_norm(
 | 
			
		||||
        out,
 | 
			
		||||
        x,
 | 
			
		||||
        self.weight.data,
 | 
			
		||||
        self.variance_epsilon,
 | 
			
		||||
    )
 | 
			
		||||
    return out
 | 
			
		||||
    setattr(ray_utils_v0, "RayWorkerWrapper", get_ipex_llm_wrapper(load_in_low_bit))
 | 
			
		||||
    setattr(ray_utils_v1, "RayWorkerWrapper", get_ipex_llm_v1_wrapper(load_in_low_bit))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_load_function(low_bit):
 | 
			
		||||
    def _ipex_llm_load_model(self) -> None:
 | 
			
		||||
        model_class = get_model_architecture(self.model_config)[1]
 | 
			
		||||
        cur_model_list = ", ".join(_IPEX_LLM_SUPPORTED_MODELS)
 | 
			
		||||
        if low_bit != "bf16":
 | 
			
		||||
            invalidInputError(model_class in _IPEX_LLM_SUPPORTED_MODELS,
 | 
			
		||||
                              f"Currently IPEX-LLM vLLM convert only support {cur_model_list}.")
 | 
			
		||||
        else:
 | 
			
		||||
            if model_class not in _IPEX_LLM_SUPPORTED_MODELS:
 | 
			
		||||
                logger.warning(
 | 
			
		||||
                    f"Currently IPEX-LLM vLLM convert only support {cur_model_list}."
 | 
			
		||||
                )
 | 
			
		||||
                self.model = get_model(
 | 
			
		||||
                    model_config=self.model_config,
 | 
			
		||||
                    load_config=self.load_config,
 | 
			
		||||
                    device_config=self.device_config,
 | 
			
		||||
                    vision_language_config=self.vision_language_config,
 | 
			
		||||
                    lora_config=self.lora_config,
 | 
			
		||||
                    parallel_config=self.parallel_config,
 | 
			
		||||
                    scheduler_config=self.scheduler_config)
 | 
			
		||||
                return
 | 
			
		||||
 | 
			
		||||
        # _model_mlp_convert()
 | 
			
		||||
        # _model_attention_convert()
 | 
			
		||||
        _model_sample_convert()
 | 
			
		||||
 | 
			
		||||
        # from vllm.utils import measure_device_memory
 | 
			
		||||
        # from vllm.utils import DeviceMemoryProfiler
 | 
			
		||||
        # with DeviceMemoryProfiler() as m:
 | 
			
		||||
        from dataclasses import replace
 | 
			
		||||
        new_device_config = DeviceConfig("cpu")
 | 
			
		||||
        new_vllm_config = replace(self.vllm_config, device_config=new_device_config)
 | 
			
		||||
        self.model = get_model(
 | 
			
		||||
            model_config=self.model_config,
 | 
			
		||||
            load_config=self.load_config,
 | 
			
		||||
            device_config=self.device_config,
 | 
			
		||||
            vision_language_config=self.vision_language_config,
 | 
			
		||||
            lora_config=self.lora_config,
 | 
			
		||||
            parallel_config=self.parallel_config,
 | 
			
		||||
            scheduler_config=self.scheduler_config)
 | 
			
		||||
 | 
			
		||||
            vllm_config=new_vllm_config
 | 
			
		||||
        )
 | 
			
		||||
        if "qwen" in self.vllm_config.model_config.model.lower() or \
 | 
			
		||||
                "baichuan" in self.vllm_config.model_config.model.lower() or \
 | 
			
		||||
                "codegeex4-all" in self.vllm_config.model_config.model.lower() or \
 | 
			
		||||
                "chatglm" in self.vllm_config.model_config.model.lower():
 | 
			
		||||
            self.model.apply(padding_mlp)
 | 
			
		||||
        from ipex_llm import optimize_model
 | 
			
		||||
        optimize_model(self.model, low_bit=low_bit, torch_dtype=self.model_config.dtype)
 | 
			
		||||
        import os
 | 
			
		||||
        not_convert_last_mlp = os.getenv("IPEX_LLM_NOT_CONVERT_LAST_MLP", None)
 | 
			
		||||
        if not_convert_last_mlp is not None:
 | 
			
		||||
            # only use to avoid nan value in last mlp forward running glm4-9b-chat
 | 
			
		||||
            modules = ["35.mlp", "36.mlp", "37.mlp", "38.mlp", "39.mlp"]
 | 
			
		||||
        else:
 | 
			
		||||
            modules = None
 | 
			
		||||
        if "minicpm" in self.vllm_config.model_config.model.lower():
 | 
			
		||||
            modules = ["vpm", "resampler"]
 | 
			
		||||
        # only for minicpm_2_6
 | 
			
		||||
        if "minicpm-v" in self.vllm_config.model_config.model.lower():
 | 
			
		||||
            from ipex_llm.transformers.models.minicpmv import merge_qkv
 | 
			
		||||
            self.model.vpm.apply(merge_qkv)
 | 
			
		||||
        if "internvl2" in self.vllm_config.model_config.model.lower():
 | 
			
		||||
            modules = ["vision_model", "mlp1"]
 | 
			
		||||
 | 
			
		||||
        # print(self.vllm_config.model_config.dtype)
 | 
			
		||||
        # print("---------------------------------------")
 | 
			
		||||
        optimize_model(self.model, low_bit=low_bit, torch_dtype=self.vllm_config.model_config.dtype,
 | 
			
		||||
                       modules_to_not_convert=modules)
 | 
			
		||||
        self.model = self.model.to(device=self.vllm_config.device_config.device,
 | 
			
		||||
                                   dtype=self.vllm_config.model_config.dtype)
 | 
			
		||||
        # print(self.model)
 | 
			
		||||
        # self.model_memory_usage = m.consumed_memory
 | 
			
		||||
        # logger = init_logger(__name__)
 | 
			
		||||
        # logger.info("Loading model weights took %.4f GB",
 | 
			
		||||
        #             self.model_memory_usage / float(2**30))
 | 
			
		||||
 | 
			
		||||
    return _ipex_llm_load_model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def padding_mlp(module: torch.nn.Module):
 | 
			
		||||
    mlp_gate_up_name = None
 | 
			
		||||
    mlp_down_name = None
 | 
			
		||||
    if isinstance(module, Qwen2MLP):
 | 
			
		||||
        mlp_gate_up_name = "gate_up_proj"
 | 
			
		||||
        mlp_down_name = "down_proj"
 | 
			
		||||
    elif isinstance(module, GLMMLP):
 | 
			
		||||
        mlp_gate_up_name = "dense_h_to_4h"
 | 
			
		||||
        mlp_down_name = "dense_4h_to_h"
 | 
			
		||||
    elif isinstance(module, BaiChuanMLP):
 | 
			
		||||
        mlp_gate_up_name = "gate_up_proj"
 | 
			
		||||
        mlp_down_name = "down_proj"
 | 
			
		||||
    else:
 | 
			
		||||
        return
 | 
			
		||||
    hidden_size = getattr(module, mlp_down_name).output_size
 | 
			
		||||
    # devide by rank
 | 
			
		||||
    intermediate_size = getattr(module, mlp_down_name).input_size_per_partition
 | 
			
		||||
    padding_size = 256
 | 
			
		||||
    padding_intermediate_size = \
 | 
			
		||||
        (intermediate_size + padding_size - 1) // padding_size * padding_size
 | 
			
		||||
    if intermediate_size % padding_size == 0:
 | 
			
		||||
        return
 | 
			
		||||
    gate_up_weight = getattr(module, mlp_gate_up_name).weight.data
 | 
			
		||||
    new_gate_up_weight = torch.zeros([padding_intermediate_size * 2, hidden_size],
 | 
			
		||||
                                     dtype=gate_up_weight.dtype, device=gate_up_weight.device)
 | 
			
		||||
    # merge_gate_up_weight
 | 
			
		||||
    new_gate_up_weight[:intermediate_size, :] = gate_up_weight[:intermediate_size, :]
 | 
			
		||||
    new_gate_up_weight[padding_intermediate_size:padding_intermediate_size+intermediate_size, :] = gate_up_weight[intermediate_size:, :]  # noqa
 | 
			
		||||
    getattr(module, mlp_gate_up_name).output_size_per_partition = padding_intermediate_size * 2
 | 
			
		||||
    getattr(module, mlp_gate_up_name).output_size = padding_intermediate_size * 2
 | 
			
		||||
    getattr(module, mlp_gate_up_name).weight = \
 | 
			
		||||
        torch.nn.Parameter(new_gate_up_weight, requires_grad=False)
 | 
			
		||||
 | 
			
		||||
    down_weight = getattr(module, mlp_down_name).weight.data
 | 
			
		||||
    new_down_weight = torch.zeros([hidden_size, padding_intermediate_size],
 | 
			
		||||
                                  dtype=down_weight.dtype, device=down_weight.device)
 | 
			
		||||
    new_down_weight[:, :intermediate_size] = down_weight
 | 
			
		||||
    getattr(module, mlp_down_name).input_size_per_partition = padding_intermediate_size
 | 
			
		||||
    getattr(module, mlp_down_name).input_size = padding_intermediate_size
 | 
			
		||||
    getattr(module, mlp_down_name).weight = torch.nn.Parameter(new_down_weight, requires_grad=False)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue