parent
83082e5cc7
commit
c9b4cadd81
3 changed files with 7 additions and 5 deletions
|
|
@ -21,7 +21,8 @@ RUN apt-get update && \
|
|||
pip install outlines==0.0.34 --no-deps && \
|
||||
pip install interegular cloudpickle diskcache joblib lark nest-asyncio numba scipy && \
|
||||
# For Qwen series models support
|
||||
pip install transformers_stream_generator einops tiktoken
|
||||
pip install transformers_stream_generator einops tiktoken && \
|
||||
pip uninstall -y deepspeed
|
||||
|
||||
COPY ./vllm_offline_inference.py /llm/
|
||||
COPY ./payload-1024.lua /llm/
|
||||
|
|
|
|||
|
|
@ -345,7 +345,7 @@ if __name__ == "__main__":
|
|||
parser.add_argument(
|
||||
"--load-in-low-bit",
|
||||
type=str,
|
||||
choices=["sym_int4", "fp8", "fp16"],
|
||||
choices=["sym_int4", "fp8", "fp8_e4m3", "fp16", "fp6"],
|
||||
default="sym_int4",
|
||||
help="Low-bit format quantization with IPEX-LLM")
|
||||
|
||||
|
|
|
|||
|
|
@ -58,7 +58,7 @@ To run offline inference using vLLM for a quick impression, use the following ex
|
|||
.. note::
|
||||
|
||||
Please modify the MODEL_PATH in offline_inference.py to use your chosen model.
|
||||
You can try modify load_in_low_bit to different values in **[sym_int4, fp8, fp16]** to use different quantization dtype.
|
||||
You can try modify load_in_low_bit to different values in **[sym_int4, fp6, fp8, fp8_e4m3, fp16]** to use different quantization dtype.
|
||||
```
|
||||
|
||||
```bash
|
||||
|
|
@ -111,6 +111,7 @@ served_model_name="YOUR_MODEL_NAME"
|
|||
# --max-model-len, --max-num-batched-tokens, --max-num-seqs
|
||||
# to acquire the best performance
|
||||
|
||||
# Change value --load-in-low-bit to [fp6, fp8, fp8_e4m3, fp16] to use different low-bit formats
|
||||
python -m ipex_llm.vllm.xpu.entrypoints.openai.api_server \
|
||||
--served-model-name $served_model_name \
|
||||
--port 8000 \
|
||||
|
|
@ -245,7 +246,7 @@ wget https://raw.githubusercontent.com/intel-analytics/ipex-llm/main/docker/llm/
|
|||
|
||||
export MODEL="YOUR_MODEL"
|
||||
|
||||
# You can change load-in-low-bit from values in [sym_int4, fp8, fp16]
|
||||
# You can change load-in-low-bit from values in [sym_int4, fp6, fp8, fp8_e4m3, fp16]
|
||||
|
||||
python3 ./benchmark_throughput.py \
|
||||
--backend vllm \
|
||||
|
|
@ -272,4 +273,4 @@ The following figure shows the result of benchmarking `Llama-2-7b-chat-hf` using
|
|||
.. tip::
|
||||
|
||||
To find the best config that fits your workload, you may need to start the service and use tools like `wrk` or `jmeter` to perform a stress tests.
|
||||
```
|
||||
```
|
||||
|
|
|
|||
Loading…
Reference in a new issue