LLM: first fix example/transformers (#8438)
This commit is contained in:
parent
983ea9b1f3
commit
c956a46c40
3 changed files with 4 additions and 149 deletions
|
|
@ -1,135 +0,0 @@
|
|||
# INT4 Inference Pipeline for Large Language Model using BigDL-LLM Transformers-like API
|
||||
|
||||
In this example, we show a pipeline to convert a large language model to low precision (INT4), and then conduct inference on the converted INT4 model, using BigDL-LLM transformers-like API.
|
||||
|
||||
> **Note**: BigDL-LLM currently supports model family LLaMA, GPT-NeoX, BLOOM and StarCoder.
|
||||
|
||||
## Prepare Environment
|
||||
We suggest using conda to manage environment:
|
||||
```bash
|
||||
conda create -n llm python=3.9
|
||||
conda activate llm
|
||||
|
||||
pip install --pre --upgrade bigdl-llm[all]
|
||||
```
|
||||
|
||||
## Run Example
|
||||
```bash
|
||||
python ./int4_pipeline.py --thread-num THREAD_NUM --model-family MODEL_FAMILY
|
||||
```
|
||||
arguments info:
|
||||
- `--thread-num THREAD_NUM`: **required** argument defining the number of threads to use for inference. It is default to be `2`.
|
||||
- `--model-family MODEL_FAMILY`: **required** argument defining the model family of the large language model (supported option: `'llama'`, `'gptneox'`, `'bloom'`, `'starcoder'`). It is default to be `'llama'`.
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: optional argument defining the huggingface repo id from which the large language model is downloaded, or the path to the huggingface checkpoint folder for the model.
|
||||
|
||||
- When model family is `'llama'`, it is default to be `'decapoda-research/llama-7b-hf'`.
|
||||
- When model family is `'gptneox'`, it is default to be `'togethercomputer/RedPajama-INCITE-7B-Chat'`.
|
||||
- When model family is `'bloom'`, it is default to be `'bigscience/bloomz-7b1'`.
|
||||
- When model family is `'starcoder'`, it is default to be `'bigcode/gpt_bigcode-santacoder'`.
|
||||
|
||||
> **Note** `REPO_ID_OR_MODEL_PATH` should fits your inputed `MODEL_FAMILY`.
|
||||
- `--promp PROMPT`: optional argument defining the prompt to be infered. It is default to be `'Q: What is CPU? A:'`.
|
||||
|
||||
## Sample Output for Inference
|
||||
### Model family LLaMA
|
||||
```log
|
||||
-------------------- bigdl-llm based tokenizer --------------------
|
||||
Inference time: xxxx s
|
||||
Output:
|
||||
[' It’s the acronym for “Central Processing Unit,” and in modern personal computers it means a single microprocessor chip that is used to control various']
|
||||
-------------------- HuggingFace transformers tokenizer --------------------
|
||||
Please note that the loading of HuggingFace transformers tokenizer may take some time.
|
||||
|
||||
The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization.
|
||||
The tokenizer class you load from this checkpoint is 'LLaMATokenizer'.
|
||||
The class this function is called from is 'LlamaTokenizer'.
|
||||
Inference time: xxxx s
|
||||
Output:
|
||||
["The Central Processing Unit (CPU) is the brains of your computer, and is also known as the microprocessor. It's where all the action"]
|
||||
-------------------- fast forward --------------------
|
||||
Llama.generate: prefix-match hit
|
||||
|
||||
llama_print_timings: load time = xxxx ms
|
||||
llama_print_timings: sample time = xxxx ms / 32 runs ( xxxx ms per token)
|
||||
llama_print_timings: prompt eval time = xxxx ms / 8 tokens ( xxxx ms per token)
|
||||
llama_print_timings: eval time = xxxx ms / 31 runs ( xxxx ms per token)
|
||||
llama_print_timings: total time = xxxx ms
|
||||
Inference time (fast forward): xxxx s
|
||||
Output:
|
||||
{'id': 'cmpl-5aa68120-c94b-4433-92f4-b75cc323c22f', 'object': 'text_completion', 'created': 1686557904, 'model': './bigdl_llm_llama_q4_0.bin', 'choices': [{'text': ' It’s a small, compact computer unit that runs on a single chip. This can be connected to various peripheral devices, including printers and displays', 'index': 0, 'logprobs': None, 'finish_reason': 'length'}], 'usage': {'prompt_tokens': 9, 'completion_tokens': 32, 'total_tokens': 41}}
|
||||
```
|
||||
|
||||
### Model family GPT-NeoX
|
||||
```log
|
||||
-------------------- bigdl-llm based tokenizer --------------------
|
||||
Inference time: xxxx s
|
||||
Output:
|
||||
[' Central processing unit, also known as processor, is a specialized microchip designed to execute all the instructions of computer programs rapidly and efficiently. Most personal computers have one or']
|
||||
-------------------- HuggingFace transformers tokenizer --------------------
|
||||
Please note that the loading of HuggingFace transformers tokenizer may take some time.
|
||||
|
||||
Inference time: xxxx s
|
||||
Output:
|
||||
[' The Central Processing Unit, or CPU, is the component of a computer that executes all instructions for carrying out different functions. It is the brains of the operation, and']
|
||||
-------------------- fast forward --------------------
|
||||
Gptneox.generate: prefix-match hit
|
||||
|
||||
gptneox_print_timings: load time = xxxx ms
|
||||
gptneox_print_timings: sample time = xxxx ms / 32 runs ( xxxx ms per run)
|
||||
gptneox_print_timings: prompt eval time = xxxx ms / 8 tokens ( xxxx ms per token)
|
||||
gptneox_print_timings: eval time = xxxx ms / 31 runs ( xxxx ms per run)
|
||||
gptneox_print_timings: total time = xxxx ms
|
||||
Inference time (fast forward): xxxx s
|
||||
Output:
|
||||
{'id': 'cmpl-a20fc4a1-3a00-4e77-a6cf-0dd0da6b9a59', 'object': 'text_completion', 'created': 1686557799, 'model': './bigdl_llm_gptneox_q4_0.bin', 'choices': [{'text': ' Core Processing Unit or Central Processing Unit is the brain of your computer, system software runs on it and handles all important tasks in your computer. i', 'index': 0, 'logprobs': None, 'finish_reason': 'length'}], 'usage': {'prompt_tokens': 9, 'completion_tokens': 32, 'total_tokens': 41}}
|
||||
```
|
||||
|
||||
### Model family BLOOM
|
||||
```log
|
||||
-------------------- bigdl-llm based tokenizer --------------------
|
||||
Inference time: xxxx s
|
||||
Output:
|
||||
[' Central Processing Unit</s>The present invention relates to a method of manufacturing an LED device, and more particularly to the manufacture of high-powered LED devices. The inventive']
|
||||
-------------------- HuggingFace transformers tokenizer --------------------
|
||||
Please note that the loading of HuggingFace transformers tokenizer may take some time.
|
||||
|
||||
Inference time: xxxx s
|
||||
Output:
|
||||
[' Central Processing Unit</s>The present invention relates to a method of manufacturing an LED device, and more particularly to the manufacture of high-powered LED devices. The inventive']
|
||||
-------------------- fast forward --------------------
|
||||
|
||||
|
||||
inference: mem per token = 24471324 bytes
|
||||
inference: sample time = xxxx ms
|
||||
inference: evel prompt time = xxxx ms / 1 tokens / xxxx ms per token
|
||||
inference: predict time = xxxx ms / 4 tokens / xxxx ms per token
|
||||
inference: total time = xxxx ms
|
||||
Inference time (fast forward): xxxx s
|
||||
Output:
|
||||
{'id': 'cmpl-4ec29030-f0c4-43d6-80b0-5f5fb76c169d', 'object': 'text_completion', 'created': 1687852341, 'model': './bigdl_llm_bloom_q4_0.bin', 'choices': [{'text': ' the Central Processing Unit</s>', 'index': 0, 'logprobs': None, 'finish_reason': None}], 'usage': {'prompt_tokens': 6, 'completion_tokens': 5, 'total_tokens': 11}}
|
||||
```
|
||||
|
||||
### Model family StarCoder
|
||||
```log
|
||||
-------------------- bigdl-llm based tokenizer --------------------
|
||||
Inference time: xxxx s
|
||||
Output:
|
||||
[' 2.56 GHz, 2.56 GHz, 2.56 GHz, 2.56 GHz, ']
|
||||
-------------------- HuggingFace transformers tokenizer --------------------
|
||||
Please note that the loading of HuggingFace transformers tokenizer may take some time.
|
||||
|
||||
Inference time: xxxx s
|
||||
Output:
|
||||
[' 2.56 GHz, 2.56 GHz, 2.56 GHz, 2.56 GHz, ']
|
||||
-------------------- fast forward --------------------
|
||||
|
||||
|
||||
bigdl-llm: mem per token = 313720 bytes
|
||||
bigdl-llm: sample time = xxxx ms
|
||||
bigdl-llm: evel prompt time = xxxx ms
|
||||
bigdl-llm: predict time = xxxx ms / 31 tokens / xxxx ms per token
|
||||
bigdl-llm: total time = xxxx ms
|
||||
Inference time (fast forward): xxxx s
|
||||
Output:
|
||||
{'id': 'cmpl-72bc4d13-d8c9-4bcb-b3f4-50a69863d534', 'object': 'text_completion', 'created': 1687852580, 'model': './bigdl_llm_starcoder_q4_0.bin', 'choices': [{'text': ' 0.50, B: 0.25, C: 0.125, D: 0.0625', 'index': 0, 'logprobs': None, 'finish_reason': None}], 'usage': {'prompt_tokens': 8, 'completion_tokens': 32, 'total_tokens': 40}}
|
||||
```
|
||||
|
|
@ -97,9 +97,8 @@ def main():
|
|||
parser.add_argument('--model-family', type=str, default='llama', required=True,
|
||||
help="The model family of the large language model (supported option: 'llama', "
|
||||
"'gptneox', 'bloom', 'starcoder')")
|
||||
parser.add_argument('--repo-id-or-model-path', type=str,
|
||||
help='The huggingface repo id for the larga language model to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, required=True,
|
||||
help='The path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--prompt', type=str, default='Q: What is CPU? A:',
|
||||
help='Prompt to infer')
|
||||
parser.add_argument('--tmp-path', type=str, default='/tmp',
|
||||
|
|
@ -107,15 +106,6 @@ def main():
|
|||
args = parser.parse_args()
|
||||
|
||||
repo_id_or_model_path = args.repo_id_or_model_path
|
||||
if args.repo_id_or_model_path is None:
|
||||
if args.model_family == 'llama':
|
||||
repo_id_or_model_path = 'decapoda-research/llama-7b-hf'
|
||||
elif args.model_family == 'gptneox':
|
||||
repo_id_or_model_path = 'togethercomputer/RedPajama-INCITE-7B-Chat'
|
||||
elif args.model_family == 'bloom':
|
||||
repo_id_or_model_path = 'bigscience/bloomz-7b1'
|
||||
elif args.model_family == 'starcoder':
|
||||
repo_id_or_model_path = 'bigcode/gpt_bigcode-santacoder'
|
||||
|
||||
# Step 1: convert original model to BigDL llm model
|
||||
bigdl_llm_path = convert(repo_id_or_model_path=repo_id_or_model_path,
|
||||
Loading…
Reference in a new issue