LLM: only run arc perf test nightly (#9448)
* LLM: only run arc perf test nightly * deleted unused python scripts * rebase main
This commit is contained in:
parent
0d55bbd9f1
commit
c487b53f21
3 changed files with 10 additions and 168 deletions
67
.github/workflows/llm_performance_tests.yml
vendored
67
.github/workflows/llm_performance_tests.yml
vendored
|
|
@ -9,72 +9,23 @@ concurrency:
|
||||||
on:
|
on:
|
||||||
schedule:
|
schedule:
|
||||||
- cron: "00 13 * * *" # GMT time, 13:00 GMT == 21:00 China
|
- cron: "00 13 * * *" # GMT time, 13:00 GMT == 21:00 China
|
||||||
pull_request:
|
# pull_request:
|
||||||
branches: [main]
|
# branches: [main]
|
||||||
paths:
|
# paths:
|
||||||
- ".github/workflows/llm_performance_tests.yml"
|
# - ".github/workflows/llm_performance_tests.yml"
|
||||||
- "python/llm/test/benchmark/**"
|
# - "python/llm/test/benchmark/**"
|
||||||
- "python/llm/dev/benchmark/all-in-one/**"
|
# - "python/llm/dev/benchmark/all-in-one/**"
|
||||||
workflow_dispatch:
|
workflow_dispatch:
|
||||||
workflow_call:
|
workflow_call:
|
||||||
|
|
||||||
# A workflow run is made up of one or more jobs that can run sequentially or in parallel
|
# A workflow run is made up of one or more jobs that can run sequentially or in parallel
|
||||||
jobs:
|
jobs:
|
||||||
llm-cpp-build:
|
llm-cpp-build:
|
||||||
|
if: ${{ github.event.schedule || github.event.inputs.artifact == 'llm-cpp-build' || github.event.inputs.artifact == 'all' }}
|
||||||
uses: ./.github/workflows/llm-binary-build.yml
|
uses: ./.github/workflows/llm-binary-build.yml
|
||||||
llm-performance-test:
|
|
||||||
if: false # skip cpu performance test for now; may add it back with separated runner
|
|
||||||
needs: llm-cpp-build
|
|
||||||
strategy:
|
|
||||||
fail-fast: false
|
|
||||||
matrix:
|
|
||||||
python-version: ["3.9"]
|
|
||||||
instruction: ["AVX512"]
|
|
||||||
runs-on: [self-hosted, llm, perf]
|
|
||||||
env:
|
|
||||||
THREAD_NUM: 24
|
|
||||||
steps:
|
|
||||||
- name: Set environment variables
|
|
||||||
shell: bash
|
|
||||||
run: |
|
|
||||||
echo "LLAMA2_7B_ORIGIN_PATH=${ORIGIN_DIR}/Llama-2-7b-chat-hf" >> "$GITHUB_ENV"
|
|
||||||
- uses: actions/checkout@v2
|
|
||||||
- name: Set up Python ${{ matrix.python-version }}
|
|
||||||
uses: actions/setup-python@v2
|
|
||||||
with:
|
|
||||||
python-version: ${{ matrix.python-version }}
|
|
||||||
- name: Install dependencies
|
|
||||||
run: |
|
|
||||||
python -m pip install --upgrade pip
|
|
||||||
python -m pip install --upgrade setuptools==58.0.4
|
|
||||||
python -m pip install --upgrade wheel
|
|
||||||
|
|
||||||
- name: Download llm binary
|
|
||||||
uses: ./.github/actions/llm/download-llm-binary
|
|
||||||
|
|
||||||
- name: Run LLM install (all) test
|
|
||||||
uses: ./.github/actions/llm/setup-llm-env
|
|
||||||
env:
|
|
||||||
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
|
|
||||||
|
|
||||||
- name: Download LLMs
|
|
||||||
shell: bash
|
|
||||||
run: |
|
|
||||||
if [ ! -d $LLAMA2_7B_ORIGIN_PATH ]; then
|
|
||||||
echo "Directory $LLAMA2_7B_ORIGIN_PATH not found. Downloading from FTP server..."
|
|
||||||
wget -r -nH --no-verbose --cut-dirs=1 $LLM_FTP_URL/llm/Llama-2-7b-chat-hf -P $ORIGIN_DIR
|
|
||||||
fi
|
|
||||||
|
|
||||||
- name: Run LLM Performance test
|
|
||||||
env:
|
|
||||||
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
|
|
||||||
run: bash python/llm/dev/benchmark/run-benchmark-tests.sh
|
|
||||||
|
|
||||||
# - name: Clean up test environment
|
|
||||||
# uses: ./.github/actions/llm/remove-llm-env
|
|
||||||
# env:
|
|
||||||
# ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
|
|
||||||
llm-performance-test-on-arc:
|
llm-performance-test-on-arc:
|
||||||
|
if: ${{ github.event.schedule || github.event.inputs.artifact == 'llm-performance-test-on-arc' || github.event.inputs.artifact == 'all' }}
|
||||||
needs: llm-cpp-build
|
needs: llm-cpp-build
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
@ -142,6 +93,7 @@ jobs:
|
||||||
fi
|
fi
|
||||||
|
|
||||||
llm-performance-test-on-spr:
|
llm-performance-test-on-spr:
|
||||||
|
if: ${{ github.event.schedule || github.event.inputs.artifact == 'llm-performance-test-on-spr' || github.event.inputs.artifact == 'all' }}
|
||||||
needs: llm-cpp-build
|
needs: llm-cpp-build
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
@ -190,6 +142,7 @@ jobs:
|
||||||
python csv_to_html.py -f /mnt/disk1/nightly_perf_cpu/
|
python csv_to_html.py -f /mnt/disk1/nightly_perf_cpu/
|
||||||
|
|
||||||
llm-performance-test-on-core:
|
llm-performance-test-on-core:
|
||||||
|
if: ${{ github.event.schedule || github.event.inputs.artifact == 'llm-performance-test-on-core' || github.event.inputs.artifact == 'all' }}
|
||||||
needs: llm-cpp-build
|
needs: llm-cpp-build
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
|
||||||
|
|
@ -1,94 +0,0 @@
|
||||||
#
|
|
||||||
# Copyright 2016 The BigDL Authors.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
#
|
|
||||||
|
|
||||||
|
|
||||||
# this code is copied from llama2 example test, and added performance test
|
|
||||||
import torch
|
|
||||||
import time
|
|
||||||
import argparse
|
|
||||||
|
|
||||||
from bigdl.llm.transformers import AutoModelForCausalLM
|
|
||||||
from transformers import LlamaTokenizer
|
|
||||||
|
|
||||||
|
|
||||||
import os
|
|
||||||
benchmark_util_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..')
|
|
||||||
import sys
|
|
||||||
sys.path.append(benchmark_util_path)
|
|
||||||
from benchmark_util import BenchmarkWrapper
|
|
||||||
|
|
||||||
# you could tune the prompt based on your own model,
|
|
||||||
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
|
|
||||||
LLAMA2_PROMPT_FORMAT = """### HUMAN:
|
|
||||||
{prompt}
|
|
||||||
|
|
||||||
### RESPONSE:
|
|
||||||
"""
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
|
|
||||||
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
|
||||||
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
|
|
||||||
', or the path to the huggingface checkpoint folder')
|
|
||||||
parser.add_argument('--prompt', type=str, default="What is AI?",
|
|
||||||
help='Prompt to infer')
|
|
||||||
parser.add_argument('--n-predict', type=int, default=32,
|
|
||||||
help='Max tokens to predict')
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
|
||||||
model_path = args.repo_id_or_model_path
|
|
||||||
|
|
||||||
# Load model in 4 bit,
|
|
||||||
# which convert the relevant layers in the model into INT4 format
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
|
||||||
load_in_4bit=True,
|
|
||||||
trust_remote_code=True)
|
|
||||||
|
|
||||||
|
|
||||||
model = BenchmarkWrapper(model, do_print=False)
|
|
||||||
|
|
||||||
# Load tokenizer
|
|
||||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
||||||
|
|
||||||
# Generate predicted tokens
|
|
||||||
with torch.inference_mode():
|
|
||||||
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
|
|
||||||
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
|
||||||
st = time.time()
|
|
||||||
# if your selected model is capable of utilizing previous key/value attentions
|
|
||||||
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
|
||||||
# it is important to set `use_cache=True` explicitly in the `generate` function
|
|
||||||
# to obtain optimal performance with BigDL-LLM INT4 optimizations
|
|
||||||
output = model.generate(input_ids,
|
|
||||||
max_new_tokens=args.n_predict)
|
|
||||||
end = time.time()
|
|
||||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
||||||
print(f'Inference time: {end-st} s')
|
|
||||||
print('-'*20, 'Prompt', '-'*20)
|
|
||||||
print(prompt)
|
|
||||||
print('-'*20, 'Output', '-'*20)
|
|
||||||
print(output_str)
|
|
||||||
|
|
||||||
assert "AI is a term" in output_str, "output is not as expected, the correctness may be wrong."
|
|
||||||
llama2_baseline = os.getenv('LLAMA2_BASELINE')
|
|
||||||
if llama2_baseline is None:
|
|
||||||
print('baseline is not set, skipping baseline validation')
|
|
||||||
else:
|
|
||||||
llama2_baseline = float(llama2_baseline)
|
|
||||||
ratio = model.rest_cost_mean / llama2_baseline
|
|
||||||
assert ratio < 1.1, f"performance did not meet baseline, the cost is {(ratio - 1) * 100}% higher than the baseline"
|
|
||||||
|
|
||||||
|
|
@ -1,17 +0,0 @@
|
||||||
# Performance tests usually use dedicated machines, see below to set env vars, e.g. model paths
|
|
||||||
# The following environment variables should be ready
|
|
||||||
# ORIGINAL_LLAMA2_PATH
|
|
||||||
# LLAMA2_BASELINE
|
|
||||||
# LLM_DIR
|
|
||||||
|
|
||||||
if [ -z "$THREAD_NUM" ]; then
|
|
||||||
THREAD_NUM=2
|
|
||||||
fi
|
|
||||||
export OMP_NUM_THREADS=$THREAD_NUM
|
|
||||||
|
|
||||||
######## LLAMA2
|
|
||||||
# transformers
|
|
||||||
|
|
||||||
echo ">>> Testing LLAMA2 transformers API"
|
|
||||||
taskset -c 0-$((THREAD_NUM - 1)) python python/llm/dev/benchmark/pipelines/llama2_test.py --repo-id-or-model-path $LLAMA2_7B_ORIGIN_PATH
|
|
||||||
|
|
||||||
Loading…
Reference in a new issue