LLM: add chatglm3 examples (#9305)
This commit is contained in:
parent
06447a3ef6
commit
c44c6dc43a
17 changed files with 899 additions and 80 deletions
|
|
@ -135,6 +135,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
|
|||
| LLaMA 2 | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/llama2) |
|
||||
| ChatGLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm) | |
|
||||
| ChatGLM2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/chatglm2) |
|
||||
| ChatGLM3 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm3) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/chatglm3) |
|
||||
| Mistral | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/mistral) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/mistral) |
|
||||
| Falcon | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/falcon) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/falcon) |
|
||||
| MPT | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/mpt) | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/mpt) |
|
||||
|
|
|
|||
|
|
@ -42,6 +42,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
|
|||
| LLaMA 2 | [link1](example/CPU/Native-Models), [link2](example/CPU/HF-Transformers-AutoModels/Model/llama2) | [link](example/GPU/HF-Transformers-AutoModels/Model/llama2) |
|
||||
| ChatGLM | [link](example/CPU/HF-Transformers-AutoModels/Model/chatglm) | |
|
||||
| ChatGLM2 | [link](example/CPU/HF-Transformers-AutoModels/Model/chatglm2) | [link](example/GPU/HF-Transformers-AutoModels/Model/chatglm2) |
|
||||
| ChatGLM3 | [link](example/CPU/HF-Transformers-AutoModels/Model/chatglm3) | [link](example/GPU/HF-Transformers-AutoModels/Model/chatglm3) |
|
||||
| Mistral | [link](example/CPU/HF-Transformers-AutoModels/Model/mistral) | [link](example/GPU/HF-Transformers-AutoModels/Model/mistral) |
|
||||
| Falcon | [link](example/CPU/HF-Transformers-AutoModels/Model/falcon) | [link](example/GPU/HF-Transformers-AutoModels/Model/falcon) |
|
||||
| MPT | [link](example/CPU/HF-Transformers-AutoModels/Model/mpt) | [link](example/CPU/HF-Transformers-AutoModels/Model/mpt) |
|
||||
|
|
|
|||
|
|
@ -1,33 +1,6 @@
|
|||
# BigDL-LLM Transformers INT4 Optimization for Large Language Model
|
||||
You can use BigDL-LLM to run any Huggingface Transformer models with INT4 optimizations on either servers or laptops. This directory contains example scripts to help you quickly get started using BigDL-LLM to run some popular open-source models in the community. Each model has its own dedicated folder, where you can find detailed instructions on how to install and run it.
|
||||
|
||||
# Verified models
|
||||
| Model | Example |
|
||||
|-----------|----------------------------------------------------------|
|
||||
| LLaMA | [link](vicuna) |
|
||||
| LLaMA 2 | [link](llama2) |
|
||||
| MPT | [link](mpt) |
|
||||
| Falcon | [link](falcon) |
|
||||
| ChatGLM | [link](chatglm) |
|
||||
| ChatGLM2 | [link](chatglm2) |
|
||||
| MOSS | [link](moss) |
|
||||
| Baichuan | [link](baichuan) |
|
||||
| Baichuan2 | [link](baichuan2) |
|
||||
| Dolly-v1 | [link](dolly_v1) |
|
||||
| Dolly-v2 | [link](dolly_v2) |
|
||||
| RedPajama | [link](redpajama) |
|
||||
| Phoenix | [link](phoenix) |
|
||||
| StarCoder | [link](starcoder) |
|
||||
| InternLM | [link](internlm) |
|
||||
| Whisper | [link](whisper) |
|
||||
| Qwen | [link](qwen) |
|
||||
| Aquila | [link](aquila) |
|
||||
| Replit | [link](replit) |
|
||||
| Mistral | [link](mistral) |
|
||||
| Flan-t5 | [link](flan-t5) |
|
||||
| Phi-1_5 | [link](phi-1_5) |
|
||||
| Qwen-VL | [link](qwen-vl) |
|
||||
|
||||
## Recommended Requirements
|
||||
To run the examples, we recommend using Intel® Xeon® processors (server), or >= 12th Gen Intel® Core™ processor (client).
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,129 @@
|
|||
# ChatGLM3
|
||||
|
||||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on ChatGLM3 models. For illustration purposes, we utilize the [THUDM/chatglm3-6b](https://huggingface.co/THUDM/chatglm3-6b) as a reference ChatGLM3 model.
|
||||
|
||||
## 0. Requirements
|
||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||
|
||||
## Example 1: Predict Tokens using `generate()` API
|
||||
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM3 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
|
||||
### 1. Install
|
||||
We suggest using conda to manage environment:
|
||||
```bash
|
||||
conda create -n llm python=3.9
|
||||
conda activate llm
|
||||
|
||||
pip install --pre --upgrade bigdl-llm[all] # install bigdl-llm with 'all' option
|
||||
```
|
||||
|
||||
### 2. Run
|
||||
```
|
||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||
```
|
||||
|
||||
Arguments info:
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the ChatGLM3 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm3-6b'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
||||
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
|
||||
>
|
||||
> Please select the appropriate size of the ChatGLM3 model based on the capabilities of your machine.
|
||||
|
||||
#### 2.1 Client
|
||||
On client Windows machine, it is recommended to run directly with full utilization of all cores:
|
||||
```powershell
|
||||
python ./generate.py
|
||||
```
|
||||
|
||||
#### 2.2 Server
|
||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
|
||||
|
||||
E.g. on Linux,
|
||||
```bash
|
||||
# set BigDL-Nano env variables
|
||||
source bigdl-nano-init
|
||||
|
||||
# e.g. for a server with 48 cores per socket
|
||||
export OMP_NUM_THREADS=48
|
||||
numactl -C 0-47 -m 0 python ./generate.py
|
||||
```
|
||||
|
||||
#### 2.3 Sample Output
|
||||
#### [THUDM/chatglm3-6b](https://huggingface.co/THUDM/chatglm3-6b)
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
<|user|>
|
||||
AI是什么?
|
||||
<|assistant|>
|
||||
-------------------- Output --------------------
|
||||
[gMASK]sop <|user|>
|
||||
AI是什么?
|
||||
<|assistant|> AI是人工智能(Artificial Intelligence)的缩写,指的是通过计算机程序和算法模拟人类智能的技术。AI可以帮助我们解决各种问题,例如语音
|
||||
```
|
||||
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
<|user|>
|
||||
What is AI?
|
||||
<|assistant|>
|
||||
-------------------- Output --------------------
|
||||
[gMASK]sop <|user|>
|
||||
What is AI?
|
||||
<|assistant|>
|
||||
AI stands for Artificial Intelligence. It refers to the development of computer systems that can perform tasks that would normally require human intelligence, such as recognizing speech or making
|
||||
```
|
||||
|
||||
## Example 2: Stream Chat using `stream_chat()` API
|
||||
In the example [streamchat.py](./streamchat.py), we show a basic use case for a ChatGLM3 model to stream chat, with BigDL-LLM INT4 optimizations.
|
||||
### 1. Install
|
||||
We suggest using conda to manage environment:
|
||||
```bash
|
||||
conda create -n llm python=3.9
|
||||
conda activate llm
|
||||
|
||||
pip install --pre --upgrade bigdl-llm[all] # install bigdl-llm with 'all' option
|
||||
```
|
||||
|
||||
### 2. Run
|
||||
**Stream Chat using `stream_chat()` API**:
|
||||
```
|
||||
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION
|
||||
```
|
||||
|
||||
**Chat using `chat()` API**:
|
||||
```
|
||||
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION --disable-stream
|
||||
```
|
||||
|
||||
Arguments info:
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the ChatGLM3 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm3-6b'`.
|
||||
- `--question QUESTION`: argument defining the question to ask. It is default to be `"晚上睡不着应该怎么办"`.
|
||||
- `--disable-stream`: argument defining whether to stream chat. If include `--disable-stream` when running the script, the stream chat is disabled and `chat()` API is used.
|
||||
|
||||
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
|
||||
>
|
||||
> Please select the appropriate size of the ChatGLM3 model based on the capabilities of your machine.
|
||||
|
||||
#### 2.1 Client
|
||||
On client Windows machine, it is recommended to run directly with full utilization of all cores:
|
||||
```powershell
|
||||
$env:PYTHONUNBUFFERED=1 # ensure stdout and stderr streams are sent straight to terminal without being first buffered
|
||||
python ./streamchat.py
|
||||
```
|
||||
|
||||
#### 2.2 Server
|
||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
|
||||
|
||||
E.g. on Linux,
|
||||
```bash
|
||||
# set BigDL-Nano env variables
|
||||
source bigdl-nano-init
|
||||
|
||||
# e.g. for a server with 48 cores per socket
|
||||
export OMP_NUM_THREADS=48
|
||||
export PYTHONUNBUFFERED=1 # ensure stdout and stderr streams are sent straight to terminal without being first buffered
|
||||
numactl -C 0-47 -m 0 python ./streamchat.py
|
||||
```
|
||||
|
|
@ -0,0 +1,69 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import time
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
from bigdl.llm.transformers import AutoModel
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
# here the prompt tuning refers to https://github.com/THUDM/ChatGLM3/blob/main/PROMPT.md
|
||||
CHATGLM_V3_PROMPT_FORMAT = "<|user|>\n{prompt}\n<|assistant|>"
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for ChatGLM3 model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/chatglm3-6b",
|
||||
help='The huggingface repo id for the ChatGLM3 model to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--prompt', type=str, default="AI是什么?",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
model = AutoModel.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
trust_remote_code=True)
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||
trust_remote_code=True)
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
prompt = CHATGLM_V3_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||
st = time.time()
|
||||
# if your selected model is capable of utilizing previous key/value attentions
|
||||
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
||||
# it is important to set `use_cache=True` explicitly in the `generate` function
|
||||
# to obtain optimal performance with BigDL-LLM INT4 optimizations
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
end = time.time()
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
print(f'Inference time: {end-st} s')
|
||||
print('-'*20, 'Prompt', '-'*20)
|
||||
print(prompt)
|
||||
print('-'*20, 'Output', '-'*20)
|
||||
print(output_str)
|
||||
|
|
@ -0,0 +1,62 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import time
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
from bigdl.llm.transformers import AutoModel
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Stream Chat for ChatGLM3 model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/chatglm3-6b",
|
||||
help='The huggingface repo id for the ChatGLM3 model to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--question', type=str, default="晚上睡不着应该怎么办",
|
||||
help='Qustion you want to ask')
|
||||
parser.add_argument('--disable-stream', action="store_true",
|
||||
help='Disable stream chat')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
disable_stream = args.disable_stream
|
||||
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
model = AutoModel.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
trust_remote_code=True)
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||
trust_remote_code=True)
|
||||
|
||||
with torch.inference_mode():
|
||||
if disable_stream:
|
||||
# Chat
|
||||
response, history = model.chat(tokenizer, args.question, history=[])
|
||||
print('-'*20, 'Chat Output', '-'*20)
|
||||
print(response)
|
||||
else:
|
||||
# Stream chat
|
||||
response_ = ""
|
||||
print('-'*20, 'Stream Chat Output', '-'*20)
|
||||
for response, history in model.stream_chat(tokenizer, args.question, history=[]):
|
||||
print(response.replace(response_, ""), end="")
|
||||
response_ = response
|
||||
|
|
@ -1,20 +1,6 @@
|
|||
# BigDL-LLM INT4 Optimization for Large Language Model
|
||||
You can use `optimize_model` API to accelerate general PyTorch models on Intel servers and PCs. This directory contains example scripts to help you quickly get started using BigDL-LLM to run some popular open-source models in the community. Each model has its own dedicated folder, where you can find detailed instructions on how to install and run it.
|
||||
|
||||
# Verified models
|
||||
| Model | Example |
|
||||
|----------------|----------------------------------------------------------|
|
||||
| LLaMA 2 | [link](llama2) |
|
||||
| ChatGLM | [link](chatglm) |
|
||||
| Openai Whisper | [link](openai-whisper) |
|
||||
| BERT | [link](bert) |
|
||||
| Bark | [link](bark) |
|
||||
| Mistral | [link](mistral) |
|
||||
| Flan-t5 | [link](flan-t5) |
|
||||
| Phi-1_5 | [link](phi-1_5) |
|
||||
| Qwen-VL | [link](qwen-vl) |
|
||||
| LLaVA | [link](llava) |
|
||||
|
||||
## Recommended Requirements
|
||||
To run the examples, we recommend using Intel® Xeon® processors (server), or >= 12th Gen Intel® Core™ processor (client).
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,59 @@
|
|||
# ChatGLM3
|
||||
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate ChatGLM3 models. For illustration purposes, we utilize the [THUDM/chatglm3-6b](https://huggingface.co/THUDM/chatglm3-6b) as a reference ChatGLM3 model.
|
||||
|
||||
## Requirements
|
||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||
|
||||
## Example: Predict Tokens using `generate()` API
|
||||
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM3 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
|
||||
### 1. Install
|
||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
|
||||
|
||||
After installing conda, create a Python environment for BigDL-LLM:
|
||||
```bash
|
||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
||||
conda activate llm
|
||||
|
||||
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
|
||||
```
|
||||
|
||||
### 2. Run
|
||||
After setting up the Python environment, you could run the example by following steps.
|
||||
|
||||
#### 2.1 Client
|
||||
On client Windows machines, it is recommended to run directly with full utilization of all cores:
|
||||
```powershell
|
||||
python ./generate.py --prompt 'AI是什么?'
|
||||
```
|
||||
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||
|
||||
#### 2.2 Server
|
||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
|
||||
|
||||
E.g. on Linux,
|
||||
```bash
|
||||
# set BigDL-Nano env variables
|
||||
source bigdl-nano-init
|
||||
|
||||
# e.g. for a server with 48 cores per socket
|
||||
export OMP_NUM_THREADS=48
|
||||
numactl -C 0-47 -m 0 python ./generate.py --prompt 'AI是什么?'
|
||||
```
|
||||
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||
|
||||
#### 2.3 Arguments Info
|
||||
In the example, several arguments can be passed to satisfy your requirements:
|
||||
|
||||
- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the ChatGLM model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm3-6b'`.
|
||||
- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
|
||||
- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
||||
#### 2.4 Sample Output
|
||||
#### [THUDM/chatglm3-6b](https://huggingface.co/THUDM/chatglm3-6b)
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Output --------------------
|
||||
[gMASK]sop <|user|>
|
||||
AI是什么?
|
||||
<|assistant|> AI是人工智能(Artificial Intelligence)的缩写,指的是通过计算机程序和算法模拟人类智能的技术。AI可以帮助我们解决各种问题,例如语音
|
||||
```
|
||||
|
|
@ -0,0 +1,61 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
from bigdl.llm import optimize_model
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
# here the prompt tuning refers to https://github.com/THUDM/ChatGLM3/blob/main/PROMPT.md
|
||||
CHATGLM_V3_PROMPT_FORMAT = "<|user|>\n{prompt}\n<|assistant|>"
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for ChatGLM3 model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/chatglm3-6b",
|
||||
help='The huggingface repo id for the ChatGLM model to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--prompt', type=str, default="AI是什么?",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
||||
# Load model
|
||||
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
# With only one line to enable BigDL-LLM optimization on model
|
||||
model = optimize_model(model)
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
prompt = CHATGLM_V3_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||
st = time.time()
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
end = time.time()
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
print(f'Inference time: {end-st} s')
|
||||
print('-'*20, 'Output', '-'*20)
|
||||
print(output_str)
|
||||
|
|
@ -1,31 +1,6 @@
|
|||
# BigDL-LLM Transformers INT4 Optimization for Large Language Model on Intel GPUs
|
||||
You can use BigDL-LLM to run almost every Huggingface Transformer models with INT4 optimizations on your laptops with Intel GPUs. This directory contains example scripts to help you quickly get started using BigDL-LLM to run some popular open-source models in the community. Each model has its own dedicated folder, where you can find detailed instructions on how to install and run it.
|
||||
|
||||
## Verified models
|
||||
|
||||
| Model | Example |
|
||||
|----------------|----------------------------------------------------------|
|
||||
| Aquila | [link](aquila) |
|
||||
| Baichuan | [link](baichuan) |
|
||||
| Baichuan2 | [link](baichuan2) |
|
||||
| ChatGLM2 | [link](chatglm2) |
|
||||
| Chinese Llama2 | [link](chinese-llama2) |
|
||||
| Dolly v1 | [link](dolly-v1) |
|
||||
| Dolly v2 | [link](dolly-v2) |
|
||||
| Falcon | [link](falcon) |
|
||||
| GPT-J | [link](gpt-j) |
|
||||
| InternLM | [link](internlm) |
|
||||
| LLaMA 2 | [link](llama2) |
|
||||
| Mistral | [link](mistral) |
|
||||
| MPT | [link](mpt) |
|
||||
| Qwen | [link](qwen) |
|
||||
| StarCoder | [link](starcoder) |
|
||||
| Vicuna | [link](vicuna) |
|
||||
| Whisper | [link](whisper) |
|
||||
| Replit | [link](replit) |
|
||||
| Flan-t5 | [link](flan-t5) |
|
||||
|
||||
|
||||
## Verified Hardware Platforms
|
||||
|
||||
- Intel Arc™ A-Series Graphics
|
||||
|
|
|
|||
|
|
@ -0,0 +1,109 @@
|
|||
# ChatGLM3
|
||||
|
||||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on ChatGLM3 models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [THUDM/chatglm3-6b](https://huggingface.co/THUDM/chatglm3-6b) as a reference ChatGLM3 model.
|
||||
|
||||
## 0. Requirements
|
||||
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||
|
||||
## Example 1: Predict Tokens using `generate()` API
|
||||
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM3 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
|
||||
### 1. Install
|
||||
We suggest using conda to manage environment:
|
||||
```bash
|
||||
conda create -n llm python=3.9
|
||||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||||
# you can install specific ipex/torch version for your need
|
||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables
|
||||
```bash
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
### 3. Run
|
||||
|
||||
For optimal performance on Arc, it is recommended to set several environment variables.
|
||||
|
||||
```bash
|
||||
export USE_XETLA=OFF
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
```
|
||||
|
||||
```
|
||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||
```
|
||||
|
||||
Arguments info:
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the ChatGLM3 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm3-6b'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
||||
#### Sample Output
|
||||
#### [THUDM/chatglm3-6b](https://huggingface.co/THUDM/chatglm3-6b)
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
<|user|>
|
||||
AI是什么?
|
||||
<|assistant|>
|
||||
-------------------- Output --------------------
|
||||
[gMASK]sop <|user|>
|
||||
AI是什么?
|
||||
<|assistant|> AI是人工智能(Artificial Intelligence)的缩写,指通过计算机程序或机器学习算法来模拟、延伸或扩展人类智能的技术。AI旨在
|
||||
```
|
||||
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
<|user|>
|
||||
What is AI?
|
||||
<|assistant|>
|
||||
-------------------- Output --------------------
|
||||
[gMASK]sop <|user|>
|
||||
What is AI?
|
||||
<|assistant|>
|
||||
AI stands for Artificial Intelligence. It refers to the development of computer systems or machines that can perform tasks that would normally require human intelligence, such as recognizing patterns
|
||||
```
|
||||
|
||||
## Example 2: Stream Chat using `stream_chat()` API
|
||||
In the example [streamchat.py](./streamchat.py), we show a basic use case for a ChatGLM3 model to stream chat, with BigDL-LLM INT4 optimizations.
|
||||
### 1. Install
|
||||
We suggest using conda to manage environment:
|
||||
```bash
|
||||
conda create -n llm python=3.9
|
||||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||||
# you can install specific ipex/torch version for your need
|
||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables
|
||||
```bash
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
### 3. Run
|
||||
|
||||
For optimal performance on Arc, it is recommended to set several environment variables.
|
||||
|
||||
```bash
|
||||
export USE_XETLA=OFF
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
```
|
||||
|
||||
**Stream Chat using `stream_chat()` API**:
|
||||
```
|
||||
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION
|
||||
```
|
||||
|
||||
**Chat using `chat()` API**:
|
||||
```
|
||||
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION --disable-stream
|
||||
```
|
||||
|
||||
Arguments info:
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the ChatGLM3 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm3-6b'`.
|
||||
- `--question QUESTION`: argument defining the question to ask. It is default to be `"晚上睡不着应该怎么办"`.
|
||||
- `--disable-stream`: argument defining whether to stream chat. If include `--disable-stream` when running the script, the stream chat is disabled and `chat()` API is used.
|
||||
|
|
@ -0,0 +1,79 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import intel_extension_for_pytorch as ipex
|
||||
import time
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
from bigdl.llm.transformers import AutoModel
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
# here the prompt tuning refers to https://github.com/THUDM/ChatGLM3/blob/main/PROMPT.md
|
||||
CHATGLM_V3_PROMPT_FORMAT = "<|user|>\n{prompt}\n<|assistant|>"
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for ChatGLM3 model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/chatglm3-6b",
|
||||
help='The huggingface repo id for the ChatGLM3 model to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--prompt', type=str, default="AI是什么?",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
model = AutoModel.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
optimize_model=True,
|
||||
trust_remote_code=True,
|
||||
use_cache=True)
|
||||
model = model.to('xpu')
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||
trust_remote_code=True)
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
prompt = CHATGLM_V3_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
# ipex model needs a warmup, then inference time can be accurate
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
|
||||
# start inference
|
||||
st = time.time()
|
||||
# if your selected model is capable of utilizing previous key/value attentions
|
||||
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
||||
# it is important to set `use_cache=True` explicitly in the `generate` function
|
||||
# to obtain optimal performance with BigDL-LLM INT4 optimizations
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
torch.xpu.synchronize()
|
||||
end = time.time()
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
print(f'Inference time: {end-st} s')
|
||||
print('-'*20, 'Prompt', '-'*20)
|
||||
print(prompt)
|
||||
print('-'*20, 'Output', '-'*20)
|
||||
print(output_str)
|
||||
|
|
@ -0,0 +1,72 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import intel_extension_for_pytorch as ipex
|
||||
import time
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
from bigdl.llm.transformers import AutoModel
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Stream Chat for ChatGLM3 model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/chatglm3-6b",
|
||||
help='The huggingface repo id for the ChatGLM3 model to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--question', type=str, default="晚上睡不着应该怎么办",
|
||||
help='Qustion you want to ask')
|
||||
parser.add_argument('--disable-stream', action="store_true",
|
||||
help='Disable stream chat')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
disable_stream = args.disable_stream
|
||||
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
model = AutoModel.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
trust_remote_code=True,
|
||||
optimize_model=True)
|
||||
model.to('xpu')
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||
trust_remote_code=True)
|
||||
|
||||
with torch.inference_mode():
|
||||
prompt = args.question
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
# ipex model needs a warmup, then inference time can be accurate
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=32)
|
||||
|
||||
# start inference
|
||||
if disable_stream:
|
||||
# Chat
|
||||
response, history = model.chat(tokenizer, args.question, history=[])
|
||||
print('-'*20, 'Chat Output', '-'*20)
|
||||
print(response)
|
||||
else:
|
||||
# Stream chat
|
||||
response_ = ""
|
||||
print('-'*20, 'Stream Chat Output', '-'*20)
|
||||
for response, history in model.stream_chat(tokenizer, args.question, history=[]):
|
||||
print(response.replace(response_, ""), end="")
|
||||
response_ = response
|
||||
|
|
@ -1,20 +1,6 @@
|
|||
# BigDL-LLM INT4 Optimization for Large Language Model on Intel GPUs
|
||||
You can use `optimize_model` API to accelerate general PyTorch models on Intel GPUs. This directory contains example scripts to help you quickly get started using BigDL-LLM to run some popular open-source models in the community. Each model has its own dedicated folder, where you can find detailed instructions on how to install and run it.
|
||||
|
||||
## Verified models
|
||||
| Model | Example |
|
||||
|----------------|----------------------------------------------------------|
|
||||
| Mistral | [link](mistral) |
|
||||
| LLaMA 2 | [link](llama2) |
|
||||
| ChatGLM2 | [link](chatglm2) |
|
||||
| Baichuan | [link](baichuan) |
|
||||
| Baichuan2 | [link](baichuan2) |
|
||||
| Replit | [link](replit) |
|
||||
| StarCoder | [link](starcoder) |
|
||||
| Dolly v1 | [link](dolly-v1) |
|
||||
| Dolly v2 | [link](dolly-v2) |
|
||||
| Flan-t5 | [link](flan-t5) |
|
||||
|
||||
## Verified Hardware Platforms
|
||||
|
||||
- Intel Arc™ A-Series Graphics
|
||||
|
|
|
|||
108
python/llm/example/GPU/PyTorch-Models/Model/chatglm3/README.md
Normal file
108
python/llm/example/GPU/PyTorch-Models/Model/chatglm3/README.md
Normal file
|
|
@ -0,0 +1,108 @@
|
|||
# ChatGLM3
|
||||
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate ChatGLM3 models. For illustration purposes, we utilize the [THUDM/chatglm3-6b](https://huggingface.co/THUDM/chatglm3-6b) as reference ChatGLM3 models.
|
||||
|
||||
## Requirements
|
||||
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||
|
||||
## Example 1: Predict Tokens using `generate()` API
|
||||
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM3 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
|
||||
### 1. Install
|
||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
|
||||
|
||||
After installing conda, create a Python environment for BigDL-LLM:
|
||||
```bash
|
||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
||||
conda activate llm
|
||||
|
||||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||||
# you can install specific ipex/torch version for your need
|
||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables
|
||||
```bash
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
### 3. Run
|
||||
|
||||
For optimal performance on Arc, it is recommended to set several environment variables.
|
||||
|
||||
```bash
|
||||
export USE_XETLA=OFF
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
```
|
||||
|
||||
```bash
|
||||
python ./generate.py --prompt 'AI是什么?'
|
||||
```
|
||||
|
||||
In the example, several arguments can be passed to satisfy your requirements:
|
||||
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the ChatGLM3 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm3-6b'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
||||
#### 2.3 Sample Output
|
||||
#### [THUDM/chatglm3-6b](https://huggingface.co/THUDM/chatglm3-6b)
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Output --------------------
|
||||
[gMASK]sop <|user|>
|
||||
AI是什么?
|
||||
<|assistant|> AI是人工智能(Artificial Intelligence)的缩写,指通过计算机程序或机器学习算法来模拟、延伸或扩展人类智能的技术。AI旨在
|
||||
```
|
||||
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Output --------------------
|
||||
[gMASK]sop <|user|>
|
||||
What is AI?
|
||||
<|assistant|>
|
||||
AI stands for Artificial Intelligence. It refers to the development of computer systems or machines that can perform tasks that would normally require human intelligence, such as recognizing patterns
|
||||
```
|
||||
|
||||
## Example 2: Stream Chat using `stream_chat()` API
|
||||
In the example [streamchat.py](./streamchat.py), we show a basic use case for a ChatGLM3 model to stream chat, with BigDL-LLM INT4 optimizations.
|
||||
### 1. Install
|
||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
|
||||
|
||||
After installing conda, create a Python environment for BigDL-LLM:
|
||||
```bash
|
||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
||||
conda activate llm
|
||||
|
||||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||||
# you can install specific ipex/torch version for your need
|
||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables
|
||||
```bash
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
### 3. Run
|
||||
|
||||
For optimal performance on Arc, it is recommended to set several environment variables.
|
||||
|
||||
```bash
|
||||
export USE_XETLA=OFF
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
```
|
||||
|
||||
**Stream Chat using `stream_chat()` API**:
|
||||
```
|
||||
python ./streamchat.py
|
||||
```
|
||||
|
||||
**Chat using `chat()` API**:
|
||||
```
|
||||
python ./streamchat.py --disable-stream
|
||||
```
|
||||
|
||||
In the example, several arguments can be passed to satisfy your requirements:
|
||||
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the ChatGLM3 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm3-6b'`.
|
||||
- `--question QUESTION`: argument defining the question to ask. It is default to be `"晚上睡不着应该怎么办"`.
|
||||
- `--disable-stream`: argument defining whether to stream chat. If include `--disable-stream` when running the script, the stream chat is disabled and `chat()` API is used.
|
||||
|
|
@ -0,0 +1,74 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import intel_extension_for_pytorch as ipex
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
from bigdl.llm import optimize_model
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
# here the prompt tuning refers to https://github.com/THUDM/ChatGLM3/blob/main/PROMPT.md
|
||||
CHATGLM_V3_PROMPT_FORMAT = "<|user|>\n{prompt}\n<|assistant|>"
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for ChatGLM3 model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/chatglm3-6b",
|
||||
help='The huggingface repo id for the ChatGLM3 model to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--prompt', type=str, default="AI是什么?",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
||||
# Load model
|
||||
model = AutoModel.from_pretrained(model_path,
|
||||
trust_remote_code=True,
|
||||
torch_dtype='auto',
|
||||
low_cpu_mem_usage=True)
|
||||
|
||||
# With only one line to enable BigDL-LLM optimization on model
|
||||
model = optimize_model(model)
|
||||
|
||||
model = model.to('xpu')
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
prompt = CHATGLM_V3_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
# ipex model needs a warmup, then inference time can be accurate
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
|
||||
# start inference
|
||||
st = time.time()
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
torch.xpu.synchronize()
|
||||
end = time.time()
|
||||
output = output.cpu()
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
print(f'Inference time: {end-st} s')
|
||||
print('-'*20, 'Output', '-'*20)
|
||||
print(output_str)
|
||||
|
|
@ -0,0 +1,75 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import intel_extension_for_pytorch as ipex
|
||||
import time
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
from bigdl.llm import optimize_model
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Stream Chat for ChatGLM3 model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/chatglm3-6b",
|
||||
help='The huggingface repo id for the ChatGLM3 model to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--question', type=str, default="晚上睡不着应该怎么办",
|
||||
help='Qustion you want to ask')
|
||||
parser.add_argument('--disable-stream', action="store_true",
|
||||
help='Disable stream chat')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
disable_stream = args.disable_stream
|
||||
|
||||
# Load model
|
||||
model = AutoModel.from_pretrained(model_path,
|
||||
trust_remote_code=True,
|
||||
torch_dtype='auto',
|
||||
low_cpu_mem_usage=True)
|
||||
|
||||
# With only one line to enable BigDL-LLM optimization on model
|
||||
model = optimize_model(model)
|
||||
|
||||
model.to('xpu')
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||
trust_remote_code=True)
|
||||
|
||||
with torch.inference_mode():
|
||||
prompt = args.question
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
# ipex model needs a warmup, then inference time can be accurate
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=32)
|
||||
|
||||
# start inference
|
||||
if disable_stream:
|
||||
# Chat
|
||||
response, history = model.chat(tokenizer, args.question, history=[])
|
||||
print('-'*20, 'Chat Output', '-'*20)
|
||||
print(response)
|
||||
else:
|
||||
# Stream chat
|
||||
response_ = ""
|
||||
print('-'*20, 'Stream Chat Output', '-'*20)
|
||||
for response, history in model.stream_chat(tokenizer, args.question, history=[]):
|
||||
print(response.replace(response_, ""), end="")
|
||||
response_ = response
|
||||
Loading…
Reference in a new issue