fix mistral for transformers>=4.39 (#11191)
* fix mistral for transformers>=4.39
This commit is contained in:
parent
67a1e05876
commit
c44b1942ed
2 changed files with 244 additions and 9 deletions
|
|
@ -1400,15 +1400,23 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
module.MistralRMSNorm,
|
||||
llama_rms_norm_forward)
|
||||
else:
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
if version.parse(trans_version) >= version.parse("4.36.0"):
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
from ipex_llm.transformers.models.mistral import mistral_attention_forward_4_36
|
||||
from ipex_llm.transformers.models.mistral import mistral_model_forward_4_36
|
||||
convert_forward(model,
|
||||
module.MistralAttention,
|
||||
mistral_attention_forward_4_36
|
||||
)
|
||||
if version.parse(trans_version) >= version.parse("4.39.0"):
|
||||
from ipex_llm.transformers.models.mistral import mistral_attention_forward_4_39
|
||||
convert_forward(model,
|
||||
module.MistralAttention,
|
||||
mistral_attention_forward_4_39
|
||||
)
|
||||
else:
|
||||
from ipex_llm.transformers.models.mistral import mistral_attention_forward_4_36
|
||||
|
||||
convert_forward(model,
|
||||
module.MistralAttention,
|
||||
mistral_attention_forward_4_36
|
||||
)
|
||||
convert_forward(model,
|
||||
module.MistralModel,
|
||||
mistral_model_forward_4_36
|
||||
|
|
@ -1420,8 +1428,6 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
module.MistralMLP,
|
||||
llama_mlp_forward)
|
||||
else:
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
from ipex_llm.transformers.models.mistral import mistral_attention_forward
|
||||
convert_forward(model,
|
||||
module.MistralAttention,
|
||||
|
|
|
|||
|
|
@ -1074,3 +1074,232 @@ def mistral_attention_forward_4_36_original(
|
|||
attn_weights = None
|
||||
|
||||
return attn_output.to(original_dtype), attn_weights, past_key_value
|
||||
|
||||
|
||||
def mistral_attention_forward_4_39(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor]=None,
|
||||
position_ids: Optional[torch.LongTensor]=None,
|
||||
past_key_value: Optional[Cache]=None,
|
||||
output_attentions: bool=False,
|
||||
use_cache: bool=False,
|
||||
**kwargs
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
||||
if use_quantize_kv_cache(self.q_proj, hidden_states):
|
||||
forward_function = mistral_attention_forward_4_36_quantized
|
||||
else:
|
||||
forward_function = mistral_attention_forward_4_39_original
|
||||
return forward_function(
|
||||
self=self,
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
kwargs=kwargs
|
||||
)
|
||||
|
||||
|
||||
def mistral_attention_forward_4_39_original(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor]=None,
|
||||
position_ids: Optional[torch.LongTensor]=None,
|
||||
past_key_value: Optional[Cache]=None,
|
||||
output_attentions: bool=False,
|
||||
use_cache: bool=False,
|
||||
**kwargs
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
||||
bsz, q_len, hidden_size = hidden_states.size()
|
||||
device = hidden_states.device
|
||||
# for flash attention
|
||||
original_dtype = hidden_states.dtype
|
||||
|
||||
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
|
||||
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
|
||||
decoding_fast_path = use_decoding_fast_path(self.q_proj,
|
||||
use_fuse_rope,
|
||||
enough_kv_room,
|
||||
bsz * q_len)
|
||||
decoding_fast_path = decoding_fast_path and not self.q_proj.enable_xetla
|
||||
|
||||
if decoding_fast_path:
|
||||
hidden_states = hidden_states.view(1, -1)
|
||||
|
||||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
|
||||
kv_seq_len = cache_k.shape[-2]
|
||||
|
||||
import xe_linear
|
||||
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
cache_k, cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim)
|
||||
kv_seq_len += 1
|
||||
|
||||
# update past_key_value's seem_tokens and kv caches.
|
||||
if self.layer_idx == 0:
|
||||
past_key_value._seen_tokens = kv_seq_len
|
||||
past_key_value.key_cache[self.layer_idx] = key_states
|
||||
past_key_value.value_cache[self.layer_idx] = value_states
|
||||
|
||||
else:
|
||||
if should_use_xetla_mm_qkv(self, device):
|
||||
if not hasattr(self, "qkv_proj_qweight"):
|
||||
self.qkv_proj_qweight = fuse_qkv_weight_xetla(self.q_proj,
|
||||
self.k_proj,
|
||||
self.v_proj,
|
||||
self.q_proj.qtype)
|
||||
import xe_linear
|
||||
q_out_len = self.q_proj.out_len
|
||||
k_out_len = self.k_proj.out_len
|
||||
v_out_len = self.v_proj.out_len
|
||||
qkv_states = xe_linear.mm_xetla(hidden_states,
|
||||
self.qkv_proj_qweight,
|
||||
self.q_proj.qtype)
|
||||
query_states = qkv_states[:, :, :q_out_len]
|
||||
key_states = qkv_states[:, :, q_out_len:q_out_len + k_out_len]
|
||||
value_states = qkv_states[:, :, q_out_len + k_out_len:]
|
||||
else:
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
|
||||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, q_len,
|
||||
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = value_states.view(bsz, q_len,
|
||||
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
|
||||
if past_key_value is not None:
|
||||
if self.layer_idx is None:
|
||||
invalidInputError(False,
|
||||
"The cache structure has changed since version v4.36. "
|
||||
f"If you are using {self.__class__.__name__} for "
|
||||
"auto-regressive decodingwith k/v caching, please make sure "
|
||||
"to initialize the attention class with a layer index.")
|
||||
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
||||
|
||||
if use_fuse_rope:
|
||||
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
|
||||
key_states,
|
||||
position_ids,
|
||||
"mistral")
|
||||
else:
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||
cos, sin, position_ids, "mistral")
|
||||
|
||||
if past_key_value is not None:
|
||||
# update the number of seen tokens
|
||||
if self.layer_idx == 0:
|
||||
past_key_value._seen_tokens += key_states.shape[-2]
|
||||
|
||||
# reuse k, v, self_attention
|
||||
# update `past_key_value` with `key_states` and `value_states` for layer `layer_idx`
|
||||
if len(past_key_value.key_cache) <= self.layer_idx:
|
||||
past_key_value.key_cache.append(key_states)
|
||||
past_key_value.value_cache.append(value_states)
|
||||
else:
|
||||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
|
||||
if not enough_kv_room:
|
||||
# allocate new
|
||||
new_c_k, new_c_v = extend_kv_cache(bsz,
|
||||
self.num_key_value_heads, # Support GQA
|
||||
self.head_dim,
|
||||
cache_k.size(2),
|
||||
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||
dtype=cache_k.dtype,
|
||||
device=device)
|
||||
|
||||
new_c_k[:] = cache_k
|
||||
new_c_v[:] = cache_v
|
||||
cache_k = new_c_k
|
||||
cache_v = new_c_v
|
||||
|
||||
key_states, value_states = append_kv_cache(cache_k, cache_v,
|
||||
key_states, value_states)
|
||||
|
||||
# update past_key_value
|
||||
past_key_value.key_cache[self.layer_idx] = key_states
|
||||
past_key_value.value_cache[self.layer_idx] = value_states
|
||||
|
||||
if not self.training and not hidden_states.requires_grad:
|
||||
fsdp_flag = use_flash_attention(query_states, key_states)
|
||||
else:
|
||||
fsdp_flag = False
|
||||
if fsdp_flag:
|
||||
attention_dtype = torch.float16 # use fp16 for flash attention
|
||||
else:
|
||||
attention_dtype = original_dtype
|
||||
|
||||
if fsdp_flag:
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups).to(device,
|
||||
dtype=attention_dtype)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups).to(device,
|
||||
dtype=attention_dtype)
|
||||
attn_output = F.scaled_dot_product_attention(query_states.to(dtype=attention_dtype),
|
||||
key_states,
|
||||
value_states,
|
||||
is_causal=True)
|
||||
attn_weights = None
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
elif use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
|
||||
# new fp16 sdp doesn't require repeat_kv
|
||||
import xe_addons
|
||||
attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
|
||||
attn_output = attn_output.view(query_states.shape)
|
||||
attn_weights = None
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
else:
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups).to(device,
|
||||
dtype=attention_dtype)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups).to(device,
|
||||
dtype=attention_dtype)
|
||||
if should_split_qkv_tensor(query_states, bsz, self.num_heads,
|
||||
q_len, kv_seq_len, output_attentions):
|
||||
attn_output, attn_weights = compute_attn_outputs_weights_split_tensor(query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
bsz,
|
||||
q_len,
|
||||
kv_seq_len,
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
self.hidden_size,
|
||||
attention_mask)
|
||||
else:
|
||||
attn_output, attn_weights = compute_attn_outputs_weights(query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
bsz,
|
||||
q_len,
|
||||
kv_seq_len,
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
self.hidden_size,
|
||||
attention_mask)
|
||||
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output.to(original_dtype), attn_weights, past_key_value
|
||||
|
|
|
|||
Loading…
Reference in a new issue