fix mistral for transformers>=4.39 (#11191)
* fix mistral for transformers>=4.39
This commit is contained in:
		
							parent
							
								
									67a1e05876
								
							
						
					
					
						commit
						c44b1942ed
					
				
					 2 changed files with 244 additions and 9 deletions
				
			
		| 
						 | 
					@ -1400,11 +1400,19 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
				
			||||||
                            module.MistralRMSNorm,
 | 
					                            module.MistralRMSNorm,
 | 
				
			||||||
                            llama_rms_norm_forward)
 | 
					                            llama_rms_norm_forward)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            if version.parse(trans_version) >= version.parse("4.36.0"):
 | 
					 | 
				
			||||||
            modeling_module_name = model.__class__.__module__
 | 
					            modeling_module_name = model.__class__.__module__
 | 
				
			||||||
            module = importlib.import_module(modeling_module_name)
 | 
					            module = importlib.import_module(modeling_module_name)
 | 
				
			||||||
                from ipex_llm.transformers.models.mistral import mistral_attention_forward_4_36
 | 
					            if version.parse(trans_version) >= version.parse("4.36.0"):
 | 
				
			||||||
                from ipex_llm.transformers.models.mistral import mistral_model_forward_4_36
 | 
					                from ipex_llm.transformers.models.mistral import mistral_model_forward_4_36
 | 
				
			||||||
 | 
					                if version.parse(trans_version) >= version.parse("4.39.0"):
 | 
				
			||||||
 | 
					                    from ipex_llm.transformers.models.mistral import mistral_attention_forward_4_39
 | 
				
			||||||
 | 
					                    convert_forward(model,
 | 
				
			||||||
 | 
					                                    module.MistralAttention,
 | 
				
			||||||
 | 
					                                    mistral_attention_forward_4_39
 | 
				
			||||||
 | 
					                                    )
 | 
				
			||||||
 | 
					                else:
 | 
				
			||||||
 | 
					                    from ipex_llm.transformers.models.mistral import mistral_attention_forward_4_36
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                    convert_forward(model,
 | 
					                    convert_forward(model,
 | 
				
			||||||
                                    module.MistralAttention,
 | 
					                                    module.MistralAttention,
 | 
				
			||||||
                                    mistral_attention_forward_4_36
 | 
					                                    mistral_attention_forward_4_36
 | 
				
			||||||
| 
						 | 
					@ -1420,8 +1428,6 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
				
			||||||
                                module.MistralMLP,
 | 
					                                module.MistralMLP,
 | 
				
			||||||
                                llama_mlp_forward)
 | 
					                                llama_mlp_forward)
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
                modeling_module_name = model.__class__.__module__
 | 
					 | 
				
			||||||
                module = importlib.import_module(modeling_module_name)
 | 
					 | 
				
			||||||
                from ipex_llm.transformers.models.mistral import mistral_attention_forward
 | 
					                from ipex_llm.transformers.models.mistral import mistral_attention_forward
 | 
				
			||||||
                convert_forward(model,
 | 
					                convert_forward(model,
 | 
				
			||||||
                                module.MistralAttention,
 | 
					                                module.MistralAttention,
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -1074,3 +1074,232 @@ def mistral_attention_forward_4_36_original(
 | 
				
			||||||
        attn_weights = None
 | 
					        attn_weights = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    return attn_output.to(original_dtype), attn_weights, past_key_value
 | 
					    return attn_output.to(original_dtype), attn_weights, past_key_value
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def mistral_attention_forward_4_39(
 | 
				
			||||||
 | 
					    self,
 | 
				
			||||||
 | 
					    hidden_states: torch.Tensor,
 | 
				
			||||||
 | 
					    attention_mask: Optional[torch.Tensor]=None,
 | 
				
			||||||
 | 
					    position_ids: Optional[torch.LongTensor]=None,
 | 
				
			||||||
 | 
					    past_key_value: Optional[Cache]=None,
 | 
				
			||||||
 | 
					    output_attentions: bool=False,
 | 
				
			||||||
 | 
					    use_cache: bool=False,
 | 
				
			||||||
 | 
					    **kwargs
 | 
				
			||||||
 | 
					) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
 | 
				
			||||||
 | 
					    if use_quantize_kv_cache(self.q_proj, hidden_states):
 | 
				
			||||||
 | 
					        forward_function = mistral_attention_forward_4_36_quantized
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        forward_function = mistral_attention_forward_4_39_original
 | 
				
			||||||
 | 
					    return forward_function(
 | 
				
			||||||
 | 
					        self=self,
 | 
				
			||||||
 | 
					        hidden_states=hidden_states,
 | 
				
			||||||
 | 
					        attention_mask=attention_mask,
 | 
				
			||||||
 | 
					        position_ids=position_ids,
 | 
				
			||||||
 | 
					        past_key_value=past_key_value,
 | 
				
			||||||
 | 
					        output_attentions=output_attentions,
 | 
				
			||||||
 | 
					        use_cache=use_cache,
 | 
				
			||||||
 | 
					        kwargs=kwargs
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def mistral_attention_forward_4_39_original(
 | 
				
			||||||
 | 
					    self,
 | 
				
			||||||
 | 
					    hidden_states: torch.Tensor,
 | 
				
			||||||
 | 
					    attention_mask: Optional[torch.Tensor]=None,
 | 
				
			||||||
 | 
					    position_ids: Optional[torch.LongTensor]=None,
 | 
				
			||||||
 | 
					    past_key_value: Optional[Cache]=None,
 | 
				
			||||||
 | 
					    output_attentions: bool=False,
 | 
				
			||||||
 | 
					    use_cache: bool=False,
 | 
				
			||||||
 | 
					    **kwargs
 | 
				
			||||||
 | 
					) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
 | 
				
			||||||
 | 
					    bsz, q_len, hidden_size = hidden_states.size()
 | 
				
			||||||
 | 
					    device = hidden_states.device
 | 
				
			||||||
 | 
					    # for flash attention
 | 
				
			||||||
 | 
					    original_dtype = hidden_states.dtype
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
 | 
				
			||||||
 | 
					    enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
 | 
				
			||||||
 | 
					    decoding_fast_path = use_decoding_fast_path(self.q_proj,
 | 
				
			||||||
 | 
					                                                use_fuse_rope,
 | 
				
			||||||
 | 
					                                                enough_kv_room,
 | 
				
			||||||
 | 
					                                                bsz * q_len)
 | 
				
			||||||
 | 
					    decoding_fast_path = decoding_fast_path and not self.q_proj.enable_xetla
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if decoding_fast_path:
 | 
				
			||||||
 | 
					        hidden_states = hidden_states.view(1, -1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        cache_k = past_key_value.key_cache[self.layer_idx]
 | 
				
			||||||
 | 
					        cache_v = past_key_value.value_cache[self.layer_idx]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        kv_seq_len = cache_k.shape[-2]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        import xe_linear
 | 
				
			||||||
 | 
					        query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
 | 
				
			||||||
 | 
					                                                                       self.q_proj.weight,
 | 
				
			||||||
 | 
					                                                                       self.k_proj.weight,
 | 
				
			||||||
 | 
					                                                                       self.v_proj.weight,
 | 
				
			||||||
 | 
					                                                                       position_ids,
 | 
				
			||||||
 | 
					                                                                       cache_k, cache_v,
 | 
				
			||||||
 | 
					                                                                       self.q_proj.weight.qtype,
 | 
				
			||||||
 | 
					                                                                       self.v_proj.weight.qtype,
 | 
				
			||||||
 | 
					                                                                       kv_seq_len,
 | 
				
			||||||
 | 
					                                                                       self.head_dim)
 | 
				
			||||||
 | 
					        kv_seq_len += 1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # update past_key_value's seem_tokens and kv caches.
 | 
				
			||||||
 | 
					        if self.layer_idx == 0:
 | 
				
			||||||
 | 
					            past_key_value._seen_tokens = kv_seq_len
 | 
				
			||||||
 | 
					        past_key_value.key_cache[self.layer_idx] = key_states
 | 
				
			||||||
 | 
					        past_key_value.value_cache[self.layer_idx] = value_states
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        if should_use_xetla_mm_qkv(self, device):
 | 
				
			||||||
 | 
					            if not hasattr(self, "qkv_proj_qweight"):
 | 
				
			||||||
 | 
					                self.qkv_proj_qweight = fuse_qkv_weight_xetla(self.q_proj,
 | 
				
			||||||
 | 
					                                                              self.k_proj,
 | 
				
			||||||
 | 
					                                                              self.v_proj,
 | 
				
			||||||
 | 
					                                                              self.q_proj.qtype)
 | 
				
			||||||
 | 
					            import xe_linear
 | 
				
			||||||
 | 
					            q_out_len = self.q_proj.out_len
 | 
				
			||||||
 | 
					            k_out_len = self.k_proj.out_len
 | 
				
			||||||
 | 
					            v_out_len = self.v_proj.out_len
 | 
				
			||||||
 | 
					            qkv_states = xe_linear.mm_xetla(hidden_states,
 | 
				
			||||||
 | 
					                                            self.qkv_proj_qweight,
 | 
				
			||||||
 | 
					                                            self.q_proj.qtype)
 | 
				
			||||||
 | 
					            query_states = qkv_states[:, :, :q_out_len]
 | 
				
			||||||
 | 
					            key_states = qkv_states[:, :, q_out_len:q_out_len + k_out_len]
 | 
				
			||||||
 | 
					            value_states = qkv_states[:, :, q_out_len + k_out_len:]
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            query_states = self.q_proj(hidden_states)
 | 
				
			||||||
 | 
					            key_states = self.k_proj(hidden_states)
 | 
				
			||||||
 | 
					            value_states = self.v_proj(hidden_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
				
			||||||
 | 
					        key_states = key_states.view(bsz, q_len,
 | 
				
			||||||
 | 
					                                     self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
				
			||||||
 | 
					        value_states = value_states.view(bsz, q_len,
 | 
				
			||||||
 | 
					                                         self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        kv_seq_len = key_states.shape[-2]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if past_key_value is not None:
 | 
				
			||||||
 | 
					            if self.layer_idx is None:
 | 
				
			||||||
 | 
					                invalidInputError(False,
 | 
				
			||||||
 | 
					                                  "The cache structure has changed since version v4.36. "
 | 
				
			||||||
 | 
					                                  f"If you are using {self.__class__.__name__} for "
 | 
				
			||||||
 | 
					                                  "auto-regressive decodingwith k/v caching, please make sure "
 | 
				
			||||||
 | 
					                                  "to initialize the attention class with a layer index.")
 | 
				
			||||||
 | 
					            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if use_fuse_rope:
 | 
				
			||||||
 | 
					            query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
 | 
				
			||||||
 | 
					                                                                         key_states,
 | 
				
			||||||
 | 
					                                                                         position_ids,
 | 
				
			||||||
 | 
					                                                                         "mistral")
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
				
			||||||
 | 
					            query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
				
			||||||
 | 
					                                                            cos, sin, position_ids, "mistral")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if past_key_value is not None:
 | 
				
			||||||
 | 
					            # update the number of seen tokens
 | 
				
			||||||
 | 
					            if self.layer_idx == 0:
 | 
				
			||||||
 | 
					                past_key_value._seen_tokens += key_states.shape[-2]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            # reuse k, v, self_attention
 | 
				
			||||||
 | 
					            # update `past_key_value` with `key_states` and `value_states` for layer `layer_idx`
 | 
				
			||||||
 | 
					            if len(past_key_value.key_cache) <= self.layer_idx:
 | 
				
			||||||
 | 
					                past_key_value.key_cache.append(key_states)
 | 
				
			||||||
 | 
					                past_key_value.value_cache.append(value_states)
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                cache_k = past_key_value.key_cache[self.layer_idx]
 | 
				
			||||||
 | 
					                cache_v = past_key_value.value_cache[self.layer_idx]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                if not enough_kv_room:
 | 
				
			||||||
 | 
					                    # allocate new
 | 
				
			||||||
 | 
					                    new_c_k, new_c_v = extend_kv_cache(bsz,
 | 
				
			||||||
 | 
					                                                       self.num_key_value_heads,  # Support GQA
 | 
				
			||||||
 | 
					                                                       self.head_dim,
 | 
				
			||||||
 | 
					                                                       cache_k.size(2),
 | 
				
			||||||
 | 
					                                                       kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
				
			||||||
 | 
					                                                       dtype=cache_k.dtype,
 | 
				
			||||||
 | 
					                                                       device=device)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                    new_c_k[:] = cache_k
 | 
				
			||||||
 | 
					                    new_c_v[:] = cache_v
 | 
				
			||||||
 | 
					                    cache_k = new_c_k
 | 
				
			||||||
 | 
					                    cache_v = new_c_v
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                key_states, value_states = append_kv_cache(cache_k, cache_v,
 | 
				
			||||||
 | 
					                                                           key_states, value_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                # update past_key_value
 | 
				
			||||||
 | 
					                past_key_value.key_cache[self.layer_idx] = key_states
 | 
				
			||||||
 | 
					                past_key_value.value_cache[self.layer_idx] = value_states
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if not self.training and not hidden_states.requires_grad:
 | 
				
			||||||
 | 
					        fsdp_flag = use_flash_attention(query_states, key_states)
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        fsdp_flag = False
 | 
				
			||||||
 | 
					    if fsdp_flag:
 | 
				
			||||||
 | 
					        attention_dtype = torch.float16  # use fp16 for flash attention
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        attention_dtype = original_dtype
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if fsdp_flag:
 | 
				
			||||||
 | 
					        # repeat k/v heads if n_kv_heads < n_heads
 | 
				
			||||||
 | 
					        key_states = repeat_kv(key_states, self.num_key_value_groups).to(device,
 | 
				
			||||||
 | 
					                                                                         dtype=attention_dtype)
 | 
				
			||||||
 | 
					        value_states = repeat_kv(value_states, self.num_key_value_groups).to(device,
 | 
				
			||||||
 | 
					                                                                             dtype=attention_dtype)
 | 
				
			||||||
 | 
					        attn_output = F.scaled_dot_product_attention(query_states.to(dtype=attention_dtype),
 | 
				
			||||||
 | 
					                                                     key_states,
 | 
				
			||||||
 | 
					                                                     value_states,
 | 
				
			||||||
 | 
					                                                     is_causal=True)
 | 
				
			||||||
 | 
					        attn_weights = None
 | 
				
			||||||
 | 
					        attn_output = attn_output.transpose(1, 2).contiguous()
 | 
				
			||||||
 | 
					        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
				
			||||||
 | 
					    elif use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
 | 
				
			||||||
 | 
					        # new fp16 sdp doesn't require repeat_kv
 | 
				
			||||||
 | 
					        import xe_addons
 | 
				
			||||||
 | 
					        attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
 | 
				
			||||||
 | 
					        attn_output = attn_output.view(query_states.shape)
 | 
				
			||||||
 | 
					        attn_weights = None
 | 
				
			||||||
 | 
					        attn_output = attn_output.transpose(1, 2).contiguous()
 | 
				
			||||||
 | 
					        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        # repeat k/v heads if n_kv_heads < n_heads
 | 
				
			||||||
 | 
					        key_states = repeat_kv(key_states, self.num_key_value_groups).to(device,
 | 
				
			||||||
 | 
					                                                                         dtype=attention_dtype)
 | 
				
			||||||
 | 
					        value_states = repeat_kv(value_states, self.num_key_value_groups).to(device,
 | 
				
			||||||
 | 
					                                                                             dtype=attention_dtype)
 | 
				
			||||||
 | 
					        if should_split_qkv_tensor(query_states, bsz, self.num_heads,
 | 
				
			||||||
 | 
					                                   q_len, kv_seq_len, output_attentions):
 | 
				
			||||||
 | 
					            attn_output, attn_weights = compute_attn_outputs_weights_split_tensor(query_states,
 | 
				
			||||||
 | 
					                                                                                  key_states,
 | 
				
			||||||
 | 
					                                                                                  value_states,
 | 
				
			||||||
 | 
					                                                                                  bsz,
 | 
				
			||||||
 | 
					                                                                                  q_len,
 | 
				
			||||||
 | 
					                                                                                  kv_seq_len,
 | 
				
			||||||
 | 
					                                                                                  self.num_heads,
 | 
				
			||||||
 | 
					                                                                                  self.head_dim,
 | 
				
			||||||
 | 
					                                                                                  self.hidden_size,
 | 
				
			||||||
 | 
					                                                                                  attention_mask)
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            attn_output, attn_weights = compute_attn_outputs_weights(query_states,
 | 
				
			||||||
 | 
					                                                                     key_states,
 | 
				
			||||||
 | 
					                                                                     value_states,
 | 
				
			||||||
 | 
					                                                                     bsz,
 | 
				
			||||||
 | 
					                                                                     q_len,
 | 
				
			||||||
 | 
					                                                                     kv_seq_len,
 | 
				
			||||||
 | 
					                                                                     self.num_heads,
 | 
				
			||||||
 | 
					                                                                     self.head_dim,
 | 
				
			||||||
 | 
					                                                                     self.hidden_size,
 | 
				
			||||||
 | 
					                                                                     attention_mask)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    attn_output = self.o_proj(attn_output)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if not output_attentions:
 | 
				
			||||||
 | 
					        attn_weights = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return attn_output.to(original_dtype), attn_weights, past_key_value
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue