LLM: Add save/load API in optimize_model to support general pytorch model (#8956)
* support hf format SL
This commit is contained in:
parent
4de73f592e
commit
c32c260ce2
3 changed files with 66 additions and 7 deletions
|
|
@ -14,11 +14,56 @@
|
|||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import os
|
||||
import json
|
||||
from .transformers import ggml_convert_low_bit
|
||||
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
|
||||
from bigdl.llm.utils.common import invalidInputError
|
||||
|
||||
|
||||
# Simulate the Hugging Face format
|
||||
PYTORCH_MODEL_NAME = "pytorch_model.bin"
|
||||
CONFIG_NAME = "bigdl_config.json"
|
||||
|
||||
|
||||
def _save_low_bit(self, save_dir, *args, **kwargs):
|
||||
invalidInputError(self._bigdl_config.get("bigdl_transformers_low_bit", False),
|
||||
f"Detected this model is not a low-bit model, please use from_pretrained's"
|
||||
f" load_in_4bit or load_in_low_bit parameter to load a 4-bit model first.")
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
model_path = os.path.join(save_dir, PYTORCH_MODEL_NAME)
|
||||
torch.save(self.state_dict(), model_path, *args, **kwargs)
|
||||
with open(os.path.join(save_dir, CONFIG_NAME), "w") as json_file:
|
||||
json.dump(self._bigdl_config, json_file)
|
||||
|
||||
|
||||
def load_low_bit(model, model_path):
|
||||
invalidInputError(isinstance(model, torch.nn.Module),
|
||||
"model should be a instance of `torch.nn.Module`.")
|
||||
invalidInputError(os.path.isdir(model_path),
|
||||
"model_path should be a valid directory path.")
|
||||
invalidInputError(os.path.isdir(os.path.join(model_path, CONFIG_NAME)),
|
||||
"bigdl_config.json should be under your model directory,"
|
||||
"please check your input path.")
|
||||
with open(os.path.join(model_path, CONFIG_NAME), 'r') as f:
|
||||
_config = json.load(f)
|
||||
|
||||
low_bit = _config.get("bigdl_transformers_low_bit", None)
|
||||
invalidInputError(low_bit,
|
||||
"Detect this model is not a low-bit model, Please use `optimize_model`"
|
||||
" with low_bit to get a low-bit model , and "
|
||||
" serialize the model using save_low_bit first.")
|
||||
|
||||
if low_bit:
|
||||
qtype = ggml_tensor_qtype[low_bit]
|
||||
model = ggml_convert_low_bit(model, qtype=qtype, convert_shape_only=True)
|
||||
|
||||
state_dict = torch.load(os.path.join(model_path, PYTORCH_MODEL_NAME))
|
||||
model.load_state_dict(state_dict=state_dict)
|
||||
return model
|
||||
|
||||
|
||||
def optimize_model(model, low_bit='sym_int4', optimize_llm=True):
|
||||
"""
|
||||
A method to optimize any pytorch models.
|
||||
|
|
@ -34,4 +79,10 @@ def optimize_model(model, low_bit='sym_int4', optimize_llm=True):
|
|||
f"Unknown load_in_low_bit value: {low_bit}, expected:"
|
||||
f" sym_int4, asym_int4, sym_int5, asym_int5 or sym_int8.")
|
||||
qtype = ggml_tensor_qtype[low_bit]
|
||||
return ggml_convert_low_bit(model, qtype=qtype, optimize_model=optimize_llm)
|
||||
model = ggml_convert_low_bit(model, qtype=qtype, optimize_model=optimize_llm)
|
||||
# add save_low_bit to pretrained model dynamically
|
||||
import types
|
||||
model._bigdl_config = dict()
|
||||
model._bigdl_config["bigdl_transformers_low_bit"] = low_bit
|
||||
model.save_low_bit = types.MethodType(_save_low_bit, model)
|
||||
return model
|
||||
|
|
|
|||
|
|
@ -45,7 +45,7 @@ from .utils import logger
|
|||
|
||||
|
||||
def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
|
||||
current_key_name=None):
|
||||
current_key_name=None, convert_shape_only=False):
|
||||
from bigdl.llm.transformers.low_bit_linear import LowBitLinear, FP4Params
|
||||
has_been_replaced = False
|
||||
|
||||
|
|
@ -70,6 +70,7 @@ def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
|
|||
requires_grad=False,
|
||||
quantized=False,
|
||||
_shape=None,
|
||||
convert_shape_only=convert_shape_only,
|
||||
qtype=qtype).to(device_type)
|
||||
new_linear._parameters['weight'] = paramsLowBit
|
||||
|
||||
|
|
@ -91,15 +92,18 @@ def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
|
|||
qtype,
|
||||
modules_to_not_convert,
|
||||
current_key_name,
|
||||
convert_shape_only,
|
||||
)
|
||||
has_been_replaced = _flag or has_been_replaced
|
||||
return model, has_been_replaced
|
||||
|
||||
|
||||
def ggml_convert_low_bit(model, qtype, optimize_model=True, device="cpu"):
|
||||
def ggml_convert_low_bit(model, qtype, optimize_model=True,
|
||||
convert_shape_only=False, device="cpu"):
|
||||
modules_to_not_convert = [] # ["lm_head"]
|
||||
model, has_been_replaced = _replace_with_low_bit_linear(
|
||||
model, qtype, modules_to_not_convert, None
|
||||
model, qtype, modules_to_not_convert,
|
||||
None, convert_shape_only,
|
||||
)
|
||||
if not has_been_replaced:
|
||||
warnings.warn(
|
||||
|
|
|
|||
|
|
@ -64,7 +64,8 @@ SYM_INT8 = ggml_tensor_qtype["sym_int8"]
|
|||
NF4 = ggml_tensor_qtype["nf4"]
|
||||
|
||||
|
||||
def ggml_convert_qtype(tensor: torch.Tensor, qtype: int, device=None):
|
||||
def ggml_convert_qtype(tensor: torch.Tensor, qtype: int,
|
||||
device=None, convert_shape_only=False):
|
||||
QK = ggml.ggml_qk_size(qtype)
|
||||
block_size_in_bytes = ggml.ggml_type_size(qtype)
|
||||
|
||||
|
|
@ -83,7 +84,7 @@ def ggml_convert_qtype(tensor: torch.Tensor, qtype: int, device=None):
|
|||
dst_tensor = torch.empty(dst_size, dtype=torch.uint8,
|
||||
device=device)
|
||||
|
||||
if device != 'meta':
|
||||
if not convert_shape_only and device != 'meta':
|
||||
dst = ctypes.c_void_p(dst_tensor.data.data_ptr())
|
||||
hist = (ctypes.c_int64 * 16)()
|
||||
ggml.ggml_quantize_tensor(src, dst, qtype, n, k, hist)
|
||||
|
|
@ -162,6 +163,7 @@ class FP4Params(torch.nn.Parameter):
|
|||
requires_grad=False,
|
||||
quantized=False,
|
||||
_shape=None,
|
||||
convert_shape_only=False,
|
||||
qtype=None):
|
||||
if data is None:
|
||||
data = torch.empty(0)
|
||||
|
|
@ -171,13 +173,15 @@ class FP4Params(torch.nn.Parameter):
|
|||
self.quantized = quantized
|
||||
self._shape = _shape
|
||||
self.qtype = qtype
|
||||
self.convert_shape_only = convert_shape_only
|
||||
return self
|
||||
|
||||
def quantize(self, device=None):
|
||||
if not self.quantized:
|
||||
w = self.data.contiguous().float()
|
||||
w_quantized = ggml_convert_qtype(w, self.qtype,
|
||||
device=device)
|
||||
device=device,
|
||||
convert_shape_only=self.convert_shape_only)
|
||||
self.data = w_quantized
|
||||
self.quantized = True
|
||||
self._shape = w.shape
|
||||
|
|
|
|||
Loading…
Reference in a new issue