LLM: Add save/load API in optimize_model to support general pytorch model (#8956)

* support hf format SL
This commit is contained in:
Zhao Changmin 2023-09-13 10:22:00 +08:00 committed by GitHub
parent 4de73f592e
commit c32c260ce2
3 changed files with 66 additions and 7 deletions

View file

@ -14,11 +14,56 @@
# limitations under the License. # limitations under the License.
# #
import torch
import os
import json
from .transformers import ggml_convert_low_bit from .transformers import ggml_convert_low_bit
from bigdl.llm.ggml.quantize import ggml_tensor_qtype from bigdl.llm.ggml.quantize import ggml_tensor_qtype
from bigdl.llm.utils.common import invalidInputError from bigdl.llm.utils.common import invalidInputError
# Simulate the Hugging Face format
PYTORCH_MODEL_NAME = "pytorch_model.bin"
CONFIG_NAME = "bigdl_config.json"
def _save_low_bit(self, save_dir, *args, **kwargs):
invalidInputError(self._bigdl_config.get("bigdl_transformers_low_bit", False),
f"Detected this model is not a low-bit model, please use from_pretrained's"
f" load_in_4bit or load_in_low_bit parameter to load a 4-bit model first.")
os.makedirs(save_dir, exist_ok=True)
model_path = os.path.join(save_dir, PYTORCH_MODEL_NAME)
torch.save(self.state_dict(), model_path, *args, **kwargs)
with open(os.path.join(save_dir, CONFIG_NAME), "w") as json_file:
json.dump(self._bigdl_config, json_file)
def load_low_bit(model, model_path):
invalidInputError(isinstance(model, torch.nn.Module),
"model should be a instance of `torch.nn.Module`.")
invalidInputError(os.path.isdir(model_path),
"model_path should be a valid directory path.")
invalidInputError(os.path.isdir(os.path.join(model_path, CONFIG_NAME)),
"bigdl_config.json should be under your model directory,"
"please check your input path.")
with open(os.path.join(model_path, CONFIG_NAME), 'r') as f:
_config = json.load(f)
low_bit = _config.get("bigdl_transformers_low_bit", None)
invalidInputError(low_bit,
"Detect this model is not a low-bit model, Please use `optimize_model`"
" with low_bit to get a low-bit model , and "
" serialize the model using save_low_bit first.")
if low_bit:
qtype = ggml_tensor_qtype[low_bit]
model = ggml_convert_low_bit(model, qtype=qtype, convert_shape_only=True)
state_dict = torch.load(os.path.join(model_path, PYTORCH_MODEL_NAME))
model.load_state_dict(state_dict=state_dict)
return model
def optimize_model(model, low_bit='sym_int4', optimize_llm=True): def optimize_model(model, low_bit='sym_int4', optimize_llm=True):
""" """
A method to optimize any pytorch models. A method to optimize any pytorch models.
@ -34,4 +79,10 @@ def optimize_model(model, low_bit='sym_int4', optimize_llm=True):
f"Unknown load_in_low_bit value: {low_bit}, expected:" f"Unknown load_in_low_bit value: {low_bit}, expected:"
f" sym_int4, asym_int4, sym_int5, asym_int5 or sym_int8.") f" sym_int4, asym_int4, sym_int5, asym_int5 or sym_int8.")
qtype = ggml_tensor_qtype[low_bit] qtype = ggml_tensor_qtype[low_bit]
return ggml_convert_low_bit(model, qtype=qtype, optimize_model=optimize_llm) model = ggml_convert_low_bit(model, qtype=qtype, optimize_model=optimize_llm)
# add save_low_bit to pretrained model dynamically
import types
model._bigdl_config = dict()
model._bigdl_config["bigdl_transformers_low_bit"] = low_bit
model.save_low_bit = types.MethodType(_save_low_bit, model)
return model

View file

@ -45,7 +45,7 @@ from .utils import logger
def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None, def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
current_key_name=None): current_key_name=None, convert_shape_only=False):
from bigdl.llm.transformers.low_bit_linear import LowBitLinear, FP4Params from bigdl.llm.transformers.low_bit_linear import LowBitLinear, FP4Params
has_been_replaced = False has_been_replaced = False
@ -70,6 +70,7 @@ def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
requires_grad=False, requires_grad=False,
quantized=False, quantized=False,
_shape=None, _shape=None,
convert_shape_only=convert_shape_only,
qtype=qtype).to(device_type) qtype=qtype).to(device_type)
new_linear._parameters['weight'] = paramsLowBit new_linear._parameters['weight'] = paramsLowBit
@ -91,15 +92,18 @@ def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
qtype, qtype,
modules_to_not_convert, modules_to_not_convert,
current_key_name, current_key_name,
convert_shape_only,
) )
has_been_replaced = _flag or has_been_replaced has_been_replaced = _flag or has_been_replaced
return model, has_been_replaced return model, has_been_replaced
def ggml_convert_low_bit(model, qtype, optimize_model=True, device="cpu"): def ggml_convert_low_bit(model, qtype, optimize_model=True,
convert_shape_only=False, device="cpu"):
modules_to_not_convert = [] # ["lm_head"] modules_to_not_convert = [] # ["lm_head"]
model, has_been_replaced = _replace_with_low_bit_linear( model, has_been_replaced = _replace_with_low_bit_linear(
model, qtype, modules_to_not_convert, None model, qtype, modules_to_not_convert,
None, convert_shape_only,
) )
if not has_been_replaced: if not has_been_replaced:
warnings.warn( warnings.warn(

View file

@ -64,7 +64,8 @@ SYM_INT8 = ggml_tensor_qtype["sym_int8"]
NF4 = ggml_tensor_qtype["nf4"] NF4 = ggml_tensor_qtype["nf4"]
def ggml_convert_qtype(tensor: torch.Tensor, qtype: int, device=None): def ggml_convert_qtype(tensor: torch.Tensor, qtype: int,
device=None, convert_shape_only=False):
QK = ggml.ggml_qk_size(qtype) QK = ggml.ggml_qk_size(qtype)
block_size_in_bytes = ggml.ggml_type_size(qtype) block_size_in_bytes = ggml.ggml_type_size(qtype)
@ -83,7 +84,7 @@ def ggml_convert_qtype(tensor: torch.Tensor, qtype: int, device=None):
dst_tensor = torch.empty(dst_size, dtype=torch.uint8, dst_tensor = torch.empty(dst_size, dtype=torch.uint8,
device=device) device=device)
if device != 'meta': if not convert_shape_only and device != 'meta':
dst = ctypes.c_void_p(dst_tensor.data.data_ptr()) dst = ctypes.c_void_p(dst_tensor.data.data_ptr())
hist = (ctypes.c_int64 * 16)() hist = (ctypes.c_int64 * 16)()
ggml.ggml_quantize_tensor(src, dst, qtype, n, k, hist) ggml.ggml_quantize_tensor(src, dst, qtype, n, k, hist)
@ -162,6 +163,7 @@ class FP4Params(torch.nn.Parameter):
requires_grad=False, requires_grad=False,
quantized=False, quantized=False,
_shape=None, _shape=None,
convert_shape_only=False,
qtype=None): qtype=None):
if data is None: if data is None:
data = torch.empty(0) data = torch.empty(0)
@ -171,13 +173,15 @@ class FP4Params(torch.nn.Parameter):
self.quantized = quantized self.quantized = quantized
self._shape = _shape self._shape = _shape
self.qtype = qtype self.qtype = qtype
self.convert_shape_only = convert_shape_only
return self return self
def quantize(self, device=None): def quantize(self, device=None):
if not self.quantized: if not self.quantized:
w = self.data.contiguous().float() w = self.data.contiguous().float()
w_quantized = ggml_convert_qtype(w, self.qtype, w_quantized = ggml_convert_qtype(w, self.qtype,
device=device) device=device,
convert_shape_only=self.convert_shape_only)
self.data = w_quantized self.data = w_quantized
self.quantized = True self.quantized = True
self._shape = w.shape self._shape = w.shape