LLM: add batch_size to the csv and html (#10080)

* LLM: add batch_size to the csv and html

* small fix
This commit is contained in:
WeiguangHan 2024-02-04 16:35:44 +08:00 committed by GitHub
parent 136f042f84
commit c2e562d037

View file

@ -96,6 +96,7 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
round(np.mean(result[in_out_pair], axis=0)[1]*1000.0, 2), round(np.mean(result[in_out_pair], axis=0)[1]*1000.0, 2),
round(np.mean(result[in_out_pair], axis=0)[2]*1000.0, 2), round(np.mean(result[in_out_pair], axis=0)[2]*1000.0, 2),
in_out_pair, in_out_pair,
batch_size,
f'{int(np.mean(result[in_out_pair], axis=0)[3])}' + f'{int(np.mean(result[in_out_pair], axis=0)[3])}' +
f'-{int(np.mean(result[in_out_pair], axis=0)[4])}', f'-{int(np.mean(result[in_out_pair], axis=0)[4])}',
num_beams, num_beams,
@ -445,8 +446,8 @@ def run_transformer_int4_gpu(repo_id,
csv_writer = csv.writer(file) csv_writer = csv.writer(file)
file.seek(0, os.SEEK_END) file.seek(0, os.SEEK_END)
if file.tell() == 0: if file.tell() == 0:
csv_writer.writerow(["","model","1st token avg latency (ms)","2+ avg latency (ms/token)","encoder time (ms)","input/output tokens","actual input/output tokens","num_beams","low_bit","cpu_embedding","peak mem (GB)"]) csv_writer.writerow(["","model","1st token avg latency (ms)","2+ avg latency (ms/token)","encoder time (ms)","input/output tokens", "batch_size", "actual input/output tokens","num_beams","low_bit","cpu_embedding","peak mem (GB)"])
csv_writer.writerow(['', repo_id, first_token_latency, rest_token_latency, encoder_time, input_output_tokens, actual_input_output_tokens, num_beams, low_bit, '', peak_mem]) csv_writer.writerow(['', repo_id, first_token_latency, rest_token_latency, encoder_time, input_output_tokens, batch_size, actual_input_output_tokens, num_beams, low_bit, '', peak_mem])
model.to('cpu') model.to('cpu')
torch.xpu.synchronize() torch.xpu.synchronize()
@ -960,7 +961,7 @@ if __name__ == '__main__':
run_model(model, api, in_out_pairs, conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'], run_model(model, api, in_out_pairs, conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'],
conf['low_bit'], conf['cpu_embedding'], conf['batch_size']) conf['low_bit'], conf['cpu_embedding'], conf['batch_size'])
df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)', df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
'input/output tokens', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding', 'input/output tokens', 'batch_size', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding',
'peak mem (GB)']) 'peak mem (GB)'])
df.to_csv(csv_name) df.to_csv(csv_name)
results = [] results = []