fix three NPU benchmark issues (#12350)
* fix three issues * limit mixed_precision for CW only
This commit is contained in:
parent
f24352aef9
commit
c267355b35
2 changed files with 15 additions and 10 deletions
|
|
@ -51,6 +51,8 @@ PHI3VISION_IDS = ['microsoft/phi-3-vision-128k-instruct']
|
||||||
|
|
||||||
QWENVL_IDS = ['Qwen/Qwen-VL-Chat']
|
QWENVL_IDS = ['Qwen/Qwen-VL-Chat']
|
||||||
|
|
||||||
|
MINICPM_IDS = ['openbmb/MiniCPM-1B-sft-bf16 ', 'openbmb/MiniCPM-2B-sft-bf16']
|
||||||
|
|
||||||
MINICPM_V_IDS = ['openbmb/MiniCPM-V-2_6', 'openbmb/MiniCPM-Llama3-V-2_5']
|
MINICPM_V_IDS = ['openbmb/MiniCPM-V-2_6', 'openbmb/MiniCPM-Llama3-V-2_5']
|
||||||
|
|
||||||
DUMMY_IDS = ['dummy/dummy-1.5B', 'dummy/dummy-4B']
|
DUMMY_IDS = ['dummy/dummy-1.5B', 'dummy/dummy-4B']
|
||||||
|
|
@ -662,10 +664,11 @@ def transformers_int4_npu_win(repo_id,
|
||||||
# slice the input_ids to ensure the prompt length is required length.
|
# slice the input_ids to ensure the prompt length is required length.
|
||||||
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||||
input_ids = input_ids[:, :in_len]
|
input_ids = input_ids[:, :in_len]
|
||||||
true_str = tokenizer.batch_decode(input_ids)[0]
|
if repo_id not in MINICPM_IDS:
|
||||||
input_list = [true_str] * batch_size
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
||||||
input_ids = tokenizer(input_list, return_tensors="pt").input_ids
|
input_list = [true_str] * batch_size
|
||||||
input_ids = input_ids[:, :in_len]
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids
|
||||||
|
input_ids = input_ids[:, :in_len]
|
||||||
actual_in_len = input_ids.shape[1]
|
actual_in_len = input_ids.shape[1]
|
||||||
result[in_out] = []
|
result[in_out] = []
|
||||||
for i in range(num_trials + warm_up):
|
for i in range(num_trials + warm_up):
|
||||||
|
|
@ -701,6 +704,7 @@ def transformers_int4_npu_pipeline_win(repo_id,
|
||||||
model_path = get_model_path(repo_id, local_model_hub)
|
model_path = get_model_path(repo_id, local_model_hub)
|
||||||
in_out_len = in_out_pairs[0].split("-")
|
in_out_len = in_out_pairs[0].split("-")
|
||||||
max_context_len = max(int(in_out_len[0]) + int(in_out_len[1]), 1024)
|
max_context_len = max(int(in_out_len[0]) + int(in_out_len[1]), 1024)
|
||||||
|
mixed_precision = True if npu_group_size == 0 else False
|
||||||
# Load model in 4 bit,
|
# Load model in 4 bit,
|
||||||
# which convert the relevant layers in the model into INT4 format
|
# which convert the relevant layers in the model into INT4 format
|
||||||
st = time.perf_counter()
|
st = time.perf_counter()
|
||||||
|
|
@ -708,7 +712,7 @@ def transformers_int4_npu_pipeline_win(repo_id,
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, pipeline=True, torch_dtype=torch.float16,
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, pipeline=True, torch_dtype=torch.float16,
|
||||||
optimize_model=optimize_model, max_context_len=max_context_len, max_prompt_len=int(in_out_len[0]),
|
optimize_model=optimize_model, max_context_len=max_context_len, max_prompt_len=int(in_out_len[0]),
|
||||||
quantization_group_size=npu_group_size, transpose_value_cache=transpose_value_cache,
|
quantization_group_size=npu_group_size, transpose_value_cache=transpose_value_cache,
|
||||||
use_cache=True, attn_implementation="eager").eval()
|
use_cache=True, attn_implementation="eager", mixed_precision=mixed_precision).eval()
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
|
||||||
end = time.perf_counter()
|
end = time.perf_counter()
|
||||||
|
|
@ -726,10 +730,11 @@ def transformers_int4_npu_pipeline_win(repo_id,
|
||||||
# slice the input_ids to ensure the prompt length is required length.
|
# slice the input_ids to ensure the prompt length is required length.
|
||||||
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||||
input_ids = input_ids[:, :in_len]
|
input_ids = input_ids[:, :in_len]
|
||||||
true_str = tokenizer.batch_decode(input_ids)[0]
|
if repo_id not in MINICPM_IDS:
|
||||||
input_list = [true_str] * batch_size
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
||||||
input_ids = tokenizer(input_list, return_tensors="pt").input_ids
|
input_list = [true_str] * batch_size
|
||||||
input_ids = input_ids[:, :in_len]
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids
|
||||||
|
input_ids = input_ids[:, :in_len]
|
||||||
actual_in_len = input_ids.shape[1]
|
actual_in_len = input_ids.shape[1]
|
||||||
result[in_out] = []
|
result[in_out] = []
|
||||||
for i in range(num_trials + warm_up):
|
for i in range(num_trials + warm_up):
|
||||||
|
|
|
||||||
|
|
@ -118,7 +118,7 @@ def generate(
|
||||||
self.head_dim, self.num_layers,
|
self.head_dim, self.num_layers,
|
||||||
self.vocab_size,
|
self.vocab_size,
|
||||||
self.transpose_value_cache,
|
self.transpose_value_cache,
|
||||||
new_tokens - 1))
|
new_tokens))
|
||||||
thread.start()
|
thread.start()
|
||||||
|
|
||||||
in_pipe_path = "\\\\.\\pipe\\llminputpipe"
|
in_pipe_path = "\\\\.\\pipe\\llminputpipe"
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue