add mistral npu support (#11523)
This commit is contained in:
parent
5a57e54400
commit
c26651f91f
3 changed files with 294 additions and 0 deletions
|
|
@ -86,6 +86,22 @@ def optimize_llm(model: torch.nn.Module):
|
||||||
convert_forward(model, LlamaAttention, llama_attention_forward)
|
convert_forward(model, LlamaAttention, llama_attention_forward)
|
||||||
convert_forward(model, LlamaMLP, llama_mlp_forward)
|
convert_forward(model, LlamaMLP, llama_mlp_forward)
|
||||||
|
|
||||||
|
elif model.config.model_type == "mistral":
|
||||||
|
from ipex_llm.transformers.npu_models.mistral import merge_qkv
|
||||||
|
from ipex_llm.transformers.npu_models.mistral import merge_mlp
|
||||||
|
model.apply(merge_qkv)
|
||||||
|
model.apply(merge_mlp)
|
||||||
|
|
||||||
|
from ipex_llm.transformers.npu_models.mistral import mistral_model_forward
|
||||||
|
from ipex_llm.transformers.npu_models.mistral import mistral_attention_forward
|
||||||
|
from ipex_llm.transformers.npu_models.mistral import mistral_mlp_forward
|
||||||
|
from transformers.models.mistral.modeling_mistral import MistralModel
|
||||||
|
from transformers.models.mistral.modeling_mistral import MistralAttention
|
||||||
|
from transformers.models.mistral.modeling_mistral import MistralMLP
|
||||||
|
convert_forward(model, MistralModel, mistral_model_forward)
|
||||||
|
convert_forward(model, MistralAttention, mistral_attention_forward)
|
||||||
|
convert_forward(model, MistralMLP, mistral_mlp_forward)
|
||||||
|
|
||||||
elif model.config.model_type == "qwen2":
|
elif model.config.model_type == "qwen2":
|
||||||
from ipex_llm.transformers.npu_models.qwen2 import merge_qkv
|
from ipex_llm.transformers.npu_models.qwen2 import merge_qkv
|
||||||
from ipex_llm.transformers.npu_models.qwen2 import merge_mlp
|
from ipex_llm.transformers.npu_models.qwen2 import merge_mlp
|
||||||
|
|
|
||||||
|
|
@ -230,6 +230,7 @@ def llama_attention_forward(
|
||||||
attn_mask=causal_mask,
|
attn_mask=causal_mask,
|
||||||
is_causal=self.is_causal and causal_mask is None and q_len > 1,
|
is_causal=self.is_causal and causal_mask is None and q_len > 1,
|
||||||
)
|
)
|
||||||
|
attn_weights = None
|
||||||
else:
|
else:
|
||||||
attn_weights = torch.matmul(query_states,
|
attn_weights = torch.matmul(query_states,
|
||||||
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||||
|
|
|
||||||
277
python/llm/src/ipex_llm/transformers/npu_models/mistral.py
Normal file
277
python/llm/src/ipex_llm/transformers/npu_models/mistral.py
Normal file
|
|
@ -0,0 +1,277 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
# Some parts of this file is adapted from
|
||||||
|
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/mistral/modeling_mistral.py
|
||||||
|
# which is licensed under Apache License 2.0:
|
||||||
|
#
|
||||||
|
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||||
|
# and OPT implementations in this library. It has been modified from its
|
||||||
|
# original forms to accommodate minor architectural differences compared
|
||||||
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
from typing import Optional, Tuple, List, Union
|
||||||
|
|
||||||
|
import math
|
||||||
|
import torch
|
||||||
|
from transformers.cache_utils import Cache
|
||||||
|
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||||
|
from transformers.models.mistral.modeling_mistral import repeat_kv, apply_rotary_pos_emb
|
||||||
|
from transformers.models.mistral.modeling_mistral import MistralAttention, MistralMLP
|
||||||
|
from transformers.models.mistral.modeling_mistral import _prepare_4d_causal_attention_mask
|
||||||
|
|
||||||
|
from ipex_llm.utils.common.log4Error import invalidInputError
|
||||||
|
from ipex_llm.transformers.npu_models.common import merge_linear
|
||||||
|
|
||||||
|
|
||||||
|
def merge_qkv(module: torch.nn.Module):
|
||||||
|
if isinstance(module, MistralAttention):
|
||||||
|
qkv_proj = merge_linear([
|
||||||
|
module.q_proj,
|
||||||
|
module.k_proj,
|
||||||
|
module.v_proj,
|
||||||
|
])
|
||||||
|
module.qkv_proj = qkv_proj
|
||||||
|
del module.q_proj, module.k_proj, module.v_proj
|
||||||
|
|
||||||
|
|
||||||
|
def merge_mlp(module: torch.nn.Module):
|
||||||
|
if isinstance(module, MistralMLP):
|
||||||
|
gate_up_proj = merge_linear([
|
||||||
|
module.gate_proj,
|
||||||
|
module.up_proj,
|
||||||
|
])
|
||||||
|
module.gate_up_proj = gate_up_proj
|
||||||
|
del module.gate_proj, module.up_proj
|
||||||
|
|
||||||
|
|
||||||
|
def mistral_model_forward(
|
||||||
|
self,
|
||||||
|
input_ids: torch.LongTensor = None,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||||
|
use_cache: Optional[bool] = None,
|
||||||
|
output_attentions: Optional[bool] = None,
|
||||||
|
output_hidden_states: Optional[bool] = None,
|
||||||
|
return_dict: Optional[bool] = None,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||||
|
output_attentions = (
|
||||||
|
output_attentions if output_attentions is not None
|
||||||
|
else self.config.output_attentions
|
||||||
|
)
|
||||||
|
output_hidden_states = (
|
||||||
|
output_hidden_states if output_hidden_states is not None
|
||||||
|
else self.config.output_hidden_states
|
||||||
|
)
|
||||||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
|
||||||
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
||||||
|
invalidInputError(False,
|
||||||
|
("You cannot specify both input_ids and inputs_embeds at the same time, "
|
||||||
|
"and must specify either one"))
|
||||||
|
elif input_ids is not None:
|
||||||
|
batch_size, seq_length = input_ids.shape
|
||||||
|
elif inputs_embeds is not None:
|
||||||
|
batch_size, seq_length, _ = inputs_embeds.shape
|
||||||
|
|
||||||
|
if self.gradient_checkpointing and self.training and use_cache:
|
||||||
|
use_cache = False
|
||||||
|
|
||||||
|
past_key_values_length = 0
|
||||||
|
|
||||||
|
# ipex-llm changes start
|
||||||
|
from ipex_llm.transformers.kv import DynamicNormalCache
|
||||||
|
if use_cache and not isinstance(past_key_values, DynamicNormalCache):
|
||||||
|
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
|
||||||
|
past_key_values_length = past_key_values.get_seq_length()
|
||||||
|
# ipex-llm changes end
|
||||||
|
|
||||||
|
if position_ids is None:
|
||||||
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||||
|
position_ids = torch.arange(
|
||||||
|
past_key_values_length, seq_length + past_key_values_length,
|
||||||
|
dtype=torch.long, device=device
|
||||||
|
)
|
||||||
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
||||||
|
else:
|
||||||
|
position_ids = position_ids.view(-1, seq_length).long()
|
||||||
|
|
||||||
|
if inputs_embeds is None:
|
||||||
|
inputs_embeds = self.embed_tokens(input_ids)
|
||||||
|
|
||||||
|
# ipex-llm changes start
|
||||||
|
# 4d mask is passed through the layers
|
||||||
|
attention_mask = _prepare_4d_causal_attention_mask(
|
||||||
|
attention_mask,
|
||||||
|
(batch_size, seq_length),
|
||||||
|
inputs_embeds,
|
||||||
|
past_key_values_length,
|
||||||
|
sliding_window=self.config.sliding_window,
|
||||||
|
)
|
||||||
|
# ipex-llm changes end
|
||||||
|
|
||||||
|
hidden_states = inputs_embeds
|
||||||
|
|
||||||
|
# decoder layers
|
||||||
|
all_hidden_states = () if output_hidden_states else None
|
||||||
|
all_self_attns = () if output_attentions else None
|
||||||
|
next_decoder_cache = None
|
||||||
|
|
||||||
|
for decoder_layer in self.layers:
|
||||||
|
if output_hidden_states:
|
||||||
|
all_hidden_states += (hidden_states,)
|
||||||
|
|
||||||
|
if self.gradient_checkpointing and self.training:
|
||||||
|
layer_outputs = self._gradient_checkpointing_func(
|
||||||
|
decoder_layer.__call__,
|
||||||
|
hidden_states,
|
||||||
|
attention_mask,
|
||||||
|
position_ids,
|
||||||
|
past_key_values,
|
||||||
|
output_attentions,
|
||||||
|
use_cache,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
layer_outputs = decoder_layer(
|
||||||
|
hidden_states,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
past_key_value=past_key_values,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
use_cache=use_cache,
|
||||||
|
)
|
||||||
|
|
||||||
|
hidden_states = layer_outputs[0]
|
||||||
|
|
||||||
|
if use_cache:
|
||||||
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
||||||
|
|
||||||
|
if output_attentions:
|
||||||
|
all_self_attns += (layer_outputs[1],)
|
||||||
|
|
||||||
|
hidden_states = self.norm(hidden_states)
|
||||||
|
|
||||||
|
# add hidden states from the last decoder layer
|
||||||
|
if output_hidden_states:
|
||||||
|
all_hidden_states += (hidden_states,)
|
||||||
|
|
||||||
|
# ipex-llm changes start
|
||||||
|
next_cache = next_decoder_cache if use_cache else None
|
||||||
|
# ipex-llm changes end
|
||||||
|
|
||||||
|
if not return_dict:
|
||||||
|
return tuple(v for v in [hidden_states, next_cache,
|
||||||
|
all_hidden_states, all_self_attns] if v is not None)
|
||||||
|
return BaseModelOutputWithPast(
|
||||||
|
last_hidden_state=hidden_states,
|
||||||
|
past_key_values=next_cache,
|
||||||
|
hidden_states=all_hidden_states,
|
||||||
|
attentions=all_self_attns,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def mistral_attention_forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_value: Optional[Cache] = None,
|
||||||
|
output_attentions: bool = False,
|
||||||
|
use_cache: bool = False,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
|
**kwargs,
|
||||||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||||
|
bsz, q_len, _ = hidden_states.size()
|
||||||
|
|
||||||
|
qkv = self.qkv_proj(hidden_states)
|
||||||
|
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
|
||||||
|
qkv = qkv.transpose(1, 2)
|
||||||
|
query_states, key_states, value_states = qkv.split([self.num_heads,
|
||||||
|
self.num_key_value_heads,
|
||||||
|
self.num_key_value_heads], dim=1)
|
||||||
|
|
||||||
|
kv_seq_len = q_len
|
||||||
|
if past_key_value is not None:
|
||||||
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
||||||
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||||
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||||
|
cos, sin, position_ids)
|
||||||
|
if past_key_value is not None:
|
||||||
|
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
||||||
|
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||||
|
self.layer_idx, cache_kwargs)
|
||||||
|
|
||||||
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||||
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||||
|
|
||||||
|
if query_states.size(2) == key_states.size(2):
|
||||||
|
# first token
|
||||||
|
from intel_npu_acceleration_library.functional import scaled_dot_product_attention
|
||||||
|
attn_output = scaled_dot_product_attention(
|
||||||
|
query_states,
|
||||||
|
key_states,
|
||||||
|
value_states,
|
||||||
|
attn_mask=attention_mask,
|
||||||
|
is_causal=attention_mask is None and bsz == 1 and q_len > 1,
|
||||||
|
)
|
||||||
|
attn_weights = None
|
||||||
|
else:
|
||||||
|
attn_weights = torch.matmul(query_states,
|
||||||
|
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||||
|
if attention_mask is not None:
|
||||||
|
attn_weights = attn_weights + attention_mask
|
||||||
|
|
||||||
|
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
|
||||||
|
dtype=torch.float32).to(value_states.dtype)
|
||||||
|
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
|
||||||
|
training=self.training)
|
||||||
|
attn_output = torch.matmul(attn_weights, value_states)
|
||||||
|
|
||||||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
|
|
||||||
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||||
|
|
||||||
|
attn_output = self.o_proj(attn_output)
|
||||||
|
|
||||||
|
if not output_attentions:
|
||||||
|
attn_weights = None
|
||||||
|
|
||||||
|
return attn_output, attn_weights, past_key_value
|
||||||
|
|
||||||
|
|
||||||
|
def mistral_mlp_forward(self, x):
|
||||||
|
gate_up_proj = self.gate_up_proj(x)
|
||||||
|
gate_proj, up_proj = gate_up_proj.chunk(2, dim=-1)
|
||||||
|
down_proj = self.down_proj(self.act_fn(gate_proj) * up_proj)
|
||||||
|
return down_proj
|
||||||
Loading…
Reference in a new issue