add sdp fp8 for llama (#11671)
* add sdp fp8 for llama * fix style * refactor
This commit is contained in:
parent
7f88ce23cd
commit
c11d5301d7
1 changed files with 13 additions and 7 deletions
|
|
@ -46,7 +46,8 @@ from ipex_llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_
|
|||
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_31, \
|
||||
apply_rotary_pos_emb, is_enough_kv_cache_room_4_36
|
||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
|
||||
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp, use_sdp_fp8
|
||||
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp, use_sdp_fp8, \
|
||||
use_sdp_causal
|
||||
from ipex_llm.transformers.models.utils import mlp_fusion_check, fp16_fusion_check
|
||||
from ipex_llm.transformers.models.utils import use_decoding_fast_path
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||
|
|
@ -1678,7 +1679,16 @@ def llama_attention_forward_4_38_quantized(
|
|||
if len(past_key_value.key_cache) <= self.layer_idx:
|
||||
repeated_key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
repeated_value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
if should_split_qkv_tensor(query_states, bsz, self.num_heads,
|
||||
if use_cache:
|
||||
cache_kwargs = None
|
||||
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||
self.layer_idx, cache_kwargs)
|
||||
if use_cache and use_sdp_causal(q_len, kv_seq_len, self.head_dim,
|
||||
query_states, self.training):
|
||||
import xe_addons
|
||||
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
|
||||
value_states, attention_mask)
|
||||
elif should_split_qkv_tensor(query_states, bsz, self.num_heads,
|
||||
q_len, kv_seq_len, output_attentions):
|
||||
attn_output, _ = native_sdp_split_qkv_tensor(query_states, repeated_key_states,
|
||||
repeated_value_states,
|
||||
|
|
@ -1719,10 +1729,6 @@ def llama_attention_forward_4_38_quantized(
|
|||
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
|
||||
dtype=torch.float32).to(query_states.dtype)
|
||||
attn_output = torch.matmul(attn_weights, repeated_value_states)
|
||||
if use_cache:
|
||||
cache_kwargs = None
|
||||
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||
self.layer_idx, cache_kwargs)
|
||||
else:
|
||||
cache_kwargs = None # Specific to RoPE models
|
||||
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||
|
|
|
|||
Loading…
Reference in a new issue