fix lisa finetune example (#12775)
This commit is contained in:
parent
2e5f2e5dda
commit
c0d6b282b8
2 changed files with 14 additions and 15 deletions
|
|
@ -13,10 +13,8 @@ conda create -n llm python=3.11
|
|||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
pip install bitsandbytes==0.43.0
|
||||
pip install datasets==2.18.0
|
||||
pip install --upgrade transformers==4.36.0
|
||||
pip install scipy fire
|
||||
pip install transformers==4.45.0 "trl<0.12.0" datasets
|
||||
pip install bitsandbytes==0.45.1 scipy fire
|
||||
```
|
||||
|
||||
### 2. LISA Finetune
|
||||
|
|
@ -51,23 +49,23 @@ Optional parameters for `lisa_finetuning.py`:
|
|||
|
||||
```log
|
||||
......
|
||||
{'loss': 1.8391, 'learning_rate': 1.9967238104745695e-05, 'epoch': 0.03}
|
||||
{'loss': 1.8242, 'learning_rate': 1.9869167087338908e-05, 'epoch': 0.05}
|
||||
{'loss': 1.8391, 'learning_rate': 1.9967238104745695e-05, 'epoch': 0.03}
|
||||
{'loss': 1.8242, 'learning_rate': 1.9869167087338908e-05, 'epoch': 0.05}
|
||||
5%|██████▉ | 20/388 [xx:xx<x:xx:xx, x.xxs/it]
|
||||
Activating layers at indices: [10] for the next steps.
|
||||
{'loss': 1.8128, 'learning_rate': 1.9706429546259592e-05, 'epoch': 0.08}
|
||||
{'loss': 1.775, 'learning_rate': 1.9480091799562706e-05, 'epoch': 0.1}
|
||||
{'loss': 1.8128, 'learning_rate': 1.9706429546259592e-05, 'epoch': 0.08}
|
||||
{'loss': 1.775, 'learning_rate': 1.9480091799562706e-05, 'epoch': 0.1}
|
||||
10%|██████████████ | 40/388 [xx:xx<xx:xx, x.xxs/it]
|
||||
Activating layers at indices: [30] for the next steps.
|
||||
{'loss': 1.7669, 'learning_rate': 1.9191636897958123e-05, 'epoch': 0.13}
|
||||
{'loss': 1.7749, 'learning_rate': 1.8842954907300236e-05, 'epoch': 0.15}
|
||||
{'loss': 1.7669, 'learning_rate': 1.9191636897958123e-05, 'epoch': 0.13}
|
||||
{'loss': 1.7749, 'learning_rate': 1.8842954907300236e-05, 'epoch': 0.15}
|
||||
15%|█████████████████████ | 60/388 [xx:xx<xx:xx, x.xxs/it]
|
||||
Activating layers at indices: [26] for the next steps.
|
||||
{'loss': 1.7735, 'learning_rate': 1.8436330524160048e-05, 'epoch': 0.18}
|
||||
{'loss': 1.7199, 'learning_rate': 1.797442810562721e-05, 'epoch': 0.21}
|
||||
{'loss': 1.7735, 'learning_rate': 1.8436330524160048e-05, 'epoch': 0.18}
|
||||
{'loss': 1.7199, 'learning_rate': 1.797442810562721e-05, 'epoch': 0.21}
|
||||
21%|████████████████████████████ | 80/388 [xx:xx<xx:xx, x.xxs/it]
|
||||
Activating layers at indices: [17] for the next steps.
|
||||
{'loss': 1.7328, 'learning_rate': 1.7460274211432463e-05, 'epoch': 0.23}
|
||||
{'loss': 1.7328, 'learning_rate': 1.7460274211432463e-05, 'epoch': 0.23}
|
||||
25%|█████████████████████████████████▋ | 96/388 [xx:xx<xx:xx, x.xxs/it]
|
||||
......
|
||||
|
||||
|
|
|
|||
|
|
@ -90,9 +90,10 @@ def train(
|
|||
model = AutoModelForCausalLM.from_pretrained(
|
||||
base_model,
|
||||
load_in_low_bit="bf16",
|
||||
optimize_model=True,
|
||||
optimize_model=False,
|
||||
torch_dtype=torch.bfloat16,
|
||||
trust_remote_code=True
|
||||
trust_remote_code=True,
|
||||
modules_to_not_convert=["lm_head"], # avoid optimize lm_head
|
||||
)
|
||||
|
||||
model = model.to("xpu")
|
||||
|
|
|
|||
Loading…
Reference in a new issue