LLM: support kv_cache optimization for Qwen-VL-Chat (#9193)
* dupport qwen_vl_chat * fix style
This commit is contained in:
		
							parent
							
								
									1cd9ab15b8
								
							
						
					
					
						commit
						c0497ab41b
					
				
					 3 changed files with 172 additions and 8 deletions
				
			
		| 
						 | 
				
			
			@ -42,7 +42,7 @@ if __name__ == '__main__':
 | 
			
		|||
    # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                 load_in_4bit=True,
 | 
			
		||||
                                                 optimize_model=False,
 | 
			
		||||
                                                 optimize_model=True,
 | 
			
		||||
                                                 trust_remote_code=True,
 | 
			
		||||
                                                 use_cache=True)
 | 
			
		||||
    model = model.to('xpu')
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -331,6 +331,17 @@ def optimize(model):
 | 
			
		|||
                        llama_rms_norm_forward
 | 
			
		||||
                        )
 | 
			
		||||
    elif model.config.model_type == "qwen":
 | 
			
		||||
        if hasattr(model.config, "visual"):
 | 
			
		||||
            # for Qwen-VL-Chat
 | 
			
		||||
            modeling_module_name = model.__class__.__module__
 | 
			
		||||
            module = importlib.import_module(modeling_module_name)
 | 
			
		||||
            from bigdl.llm.transformers.models.qwen_vl import qwen_attention_forward_vl
 | 
			
		||||
            convert_forward(model,
 | 
			
		||||
                            module.QWenAttention,
 | 
			
		||||
                            qwen_attention_forward_vl
 | 
			
		||||
                            )
 | 
			
		||||
        else:
 | 
			
		||||
            # for Qwen-7B and Qwen-14B
 | 
			
		||||
            modeling_module_name = model.__class__.__module__
 | 
			
		||||
            module = importlib.import_module(modeling_module_name)
 | 
			
		||||
            from bigdl.llm.transformers.models.qwen import qwen_attention_forward
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										153
									
								
								python/llm/src/bigdl/llm/transformers/models/qwen_vl.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										153
									
								
								python/llm/src/bigdl/llm/transformers/models/qwen_vl.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,153 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
# Some parts of this file is adapted from
 | 
			
		||||
# https://huggingface.co/Qwen/Qwen-VL-Chat/blob/bbe5a805de49a41b7343d240ab84d4c305caa265/modeling_qwen.py
 | 
			
		||||
#
 | 
			
		||||
# Copyright (c) Alibaba Cloud.
 | 
			
		||||
#
 | 
			
		||||
# This source code is licensed under the license found in the
 | 
			
		||||
# LICENSE file in the root directory of this source tree.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import importlib
 | 
			
		||||
import math
 | 
			
		||||
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
import torch.utils.checkpoint
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
from bigdl.llm.transformers.models.utils import extend_kv_cache, init_kv_cache, append_kv_cache
 | 
			
		||||
from bigdl.llm.transformers.models.utils import rotate_half
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def apply_rotary_pos_emb(t, freqs):
 | 
			
		||||
    cos, sin = freqs
 | 
			
		||||
    rot_dim = freqs[0].shape[-1]
 | 
			
		||||
    t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
 | 
			
		||||
    t_ = t_.float()
 | 
			
		||||
    t_pass_ = t_pass_.float()
 | 
			
		||||
    t_ = (t_ * cos) + (rotate_half(t_) * sin)
 | 
			
		||||
    return torch.cat((t_, t_pass_), dim=-1).type_as(t)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def qwen_attention_forward_vl(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: Optional[Tuple[torch.FloatTensor]],
 | 
			
		||||
    rotary_pos_emb: Optional[List[torch.Tensor]] = None,
 | 
			
		||||
    registered_causal_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    layer_past: Optional[Tuple[torch.Tensor]] = None,
 | 
			
		||||
    attention_mask: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    head_mask: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    encoder_hidden_states: Optional[torch.Tensor] = None,
 | 
			
		||||
    encoder_attention_mask: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    output_attentions: Optional[bool] = False,
 | 
			
		||||
    use_cache: Optional[bool] = False,
 | 
			
		||||
):
 | 
			
		||||
 | 
			
		||||
    mixed_x_layer = self.c_attn(hidden_states)
 | 
			
		||||
 | 
			
		||||
    query, key, value = mixed_x_layer.split(self.split_size, dim=2)
 | 
			
		||||
 | 
			
		||||
    query = self._split_heads(query, self.num_heads, self.head_dim)
 | 
			
		||||
    key = self._split_heads(key, self.num_heads, self.head_dim)
 | 
			
		||||
    value = self._split_heads(value, self.num_heads, self.head_dim)
 | 
			
		||||
 | 
			
		||||
    kv_seq_len = hidden_states.size()[1]
 | 
			
		||||
 | 
			
		||||
    if rotary_pos_emb is not None:
 | 
			
		||||
        cur_len = query.shape[1]
 | 
			
		||||
        rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
 | 
			
		||||
        rotary_pos_emb = (rotary_pos_emb,) * 2
 | 
			
		||||
        q_pos_emb, k_pos_emb = rotary_pos_emb
 | 
			
		||||
        # Slice the pos emb for current inference
 | 
			
		||||
        query = apply_rotary_pos_emb(query, q_pos_emb)
 | 
			
		||||
        key = apply_rotary_pos_emb(key, k_pos_emb)
 | 
			
		||||
 | 
			
		||||
    bsz, _, n_heads, head_dim = key.size()
 | 
			
		||||
 | 
			
		||||
    if layer_past is not None:
 | 
			
		||||
        kv_seq_len += layer_past[0].shape[1]
 | 
			
		||||
        # past_key, past_value = layer_past[0], layer_past[1]
 | 
			
		||||
        # key = torch.cat((past_key, key), dim=1)
 | 
			
		||||
        # value = torch.cat((past_value, value), dim=1)
 | 
			
		||||
        cache_k = layer_past[0].transpose(1, 2)
 | 
			
		||||
        cache_v = layer_past[1].transpose(1, 2)
 | 
			
		||||
        if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
 | 
			
		||||
            # allocate new
 | 
			
		||||
            new_cache_k, new_cache_v = extend_kv_cache(bsz,
 | 
			
		||||
                                                       self.num_heads,
 | 
			
		||||
                                                       self.head_dim,
 | 
			
		||||
                                                       cache_k.size(2),
 | 
			
		||||
                                                       kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
			
		||||
                                                       dtype=cache_k.dtype,
 | 
			
		||||
                                                       device=hidden_states.device)
 | 
			
		||||
            new_cache_k[:] = cache_k
 | 
			
		||||
            new_cache_v[:] = cache_v
 | 
			
		||||
            cache_k = new_cache_k
 | 
			
		||||
            cache_v = new_cache_v
 | 
			
		||||
 | 
			
		||||
        key_states, value_states = append_kv_cache(cache_k, cache_v,
 | 
			
		||||
                                                   key.transpose(1, 2), value.transpose(1, 2))
 | 
			
		||||
        key = key_states.transpose(1, 2)
 | 
			
		||||
        value = value_states.transpose(1, 2)
 | 
			
		||||
    elif use_cache:
 | 
			
		||||
        max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
        new_key_states, new_value_states = init_kv_cache(bsz,
 | 
			
		||||
                                                         self.num_heads,
 | 
			
		||||
                                                         self.head_dim,
 | 
			
		||||
                                                         kv_seq_len,
 | 
			
		||||
                                                         max_cache_length,
 | 
			
		||||
                                                         dtype=key.dtype,
 | 
			
		||||
                                                         device=hidden_states.device)
 | 
			
		||||
        new_key_states[:] = key.transpose(1, 2)
 | 
			
		||||
        new_value_states[:] = value.transpose(1, 2)
 | 
			
		||||
        key = new_key_states.transpose(1, 2)
 | 
			
		||||
        value = new_value_states.transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
    if use_cache:
 | 
			
		||||
        present = (key, value)
 | 
			
		||||
    else:
 | 
			
		||||
        present = None
 | 
			
		||||
 | 
			
		||||
    if self.use_logn_attn and not self.training:
 | 
			
		||||
        if self.logn_tensor.device != query.device or self.logn_tensor.dtype != query.dtype:
 | 
			
		||||
            self.logn_tensor = self.logn_tensor.to(query.device).type_as(query)
 | 
			
		||||
        seq_start = key.size(1) - query.size(1)
 | 
			
		||||
        seq_end = key.size(1)
 | 
			
		||||
        logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :]
 | 
			
		||||
        query = query * logn_tensor.expand_as(query)
 | 
			
		||||
 | 
			
		||||
    query = query.permute(0, 2, 1, 3)
 | 
			
		||||
    key = key.permute(0, 2, 1, 3)
 | 
			
		||||
    value = value.permute(0, 2, 1, 3)
 | 
			
		||||
    attn_output, attn_weight = self._attn(
 | 
			
		||||
        query, key, value, registered_causal_mask, attention_mask, head_mask
 | 
			
		||||
    )
 | 
			
		||||
    context_layer = self._merge_heads(
 | 
			
		||||
        attn_output, self.num_heads, self.head_dim
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    attn_output = self.c_proj(context_layer)
 | 
			
		||||
 | 
			
		||||
    outputs = (attn_output, present)
 | 
			
		||||
    if output_attentions:
 | 
			
		||||
        outputs += (attn_weight,)
 | 
			
		||||
 | 
			
		||||
    return outputs
 | 
			
		||||
		Loading…
	
		Reference in a new issue