LLM: support kv_cache optimization for Qwen-VL-Chat (#9193)
* dupport qwen_vl_chat * fix style
This commit is contained in:
parent
1cd9ab15b8
commit
c0497ab41b
3 changed files with 172 additions and 8 deletions
|
|
@ -42,7 +42,7 @@ if __name__ == '__main__':
|
|||
# which convert the relevant layers in the model into INT4 format
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
optimize_model=False,
|
||||
optimize_model=True,
|
||||
trust_remote_code=True,
|
||||
use_cache=True)
|
||||
model = model.to('xpu')
|
||||
|
|
|
|||
|
|
@ -331,6 +331,17 @@ def optimize(model):
|
|||
llama_rms_norm_forward
|
||||
)
|
||||
elif model.config.model_type == "qwen":
|
||||
if hasattr(model.config, "visual"):
|
||||
# for Qwen-VL-Chat
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
from bigdl.llm.transformers.models.qwen_vl import qwen_attention_forward_vl
|
||||
convert_forward(model,
|
||||
module.QWenAttention,
|
||||
qwen_attention_forward_vl
|
||||
)
|
||||
else:
|
||||
# for Qwen-7B and Qwen-14B
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
from bigdl.llm.transformers.models.qwen import qwen_attention_forward
|
||||
|
|
|
|||
153
python/llm/src/bigdl/llm/transformers/models/qwen_vl.py
Normal file
153
python/llm/src/bigdl/llm/transformers/models/qwen_vl.py
Normal file
|
|
@ -0,0 +1,153 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# Some parts of this file is adapted from
|
||||
# https://huggingface.co/Qwen/Qwen-VL-Chat/blob/bbe5a805de49a41b7343d240ab84d4c305caa265/modeling_qwen.py
|
||||
#
|
||||
# Copyright (c) Alibaba Cloud.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
#
|
||||
|
||||
import importlib
|
||||
import math
|
||||
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint
|
||||
from transformers.utils import logging
|
||||
from bigdl.llm.transformers.models.utils import extend_kv_cache, init_kv_cache, append_kv_cache
|
||||
from bigdl.llm.transformers.models.utils import rotate_half
|
||||
|
||||
|
||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
|
||||
|
||||
|
||||
def apply_rotary_pos_emb(t, freqs):
|
||||
cos, sin = freqs
|
||||
rot_dim = freqs[0].shape[-1]
|
||||
t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
|
||||
t_ = t_.float()
|
||||
t_pass_ = t_pass_.float()
|
||||
t_ = (t_ * cos) + (rotate_half(t_) * sin)
|
||||
return torch.cat((t_, t_pass_), dim=-1).type_as(t)
|
||||
|
||||
|
||||
def qwen_attention_forward_vl(
|
||||
self,
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
||||
rotary_pos_emb: Optional[List[torch.Tensor]] = None,
|
||||
registered_causal_mask: Optional[torch.Tensor] = None,
|
||||
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
):
|
||||
|
||||
mixed_x_layer = self.c_attn(hidden_states)
|
||||
|
||||
query, key, value = mixed_x_layer.split(self.split_size, dim=2)
|
||||
|
||||
query = self._split_heads(query, self.num_heads, self.head_dim)
|
||||
key = self._split_heads(key, self.num_heads, self.head_dim)
|
||||
value = self._split_heads(value, self.num_heads, self.head_dim)
|
||||
|
||||
kv_seq_len = hidden_states.size()[1]
|
||||
|
||||
if rotary_pos_emb is not None:
|
||||
cur_len = query.shape[1]
|
||||
rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
|
||||
rotary_pos_emb = (rotary_pos_emb,) * 2
|
||||
q_pos_emb, k_pos_emb = rotary_pos_emb
|
||||
# Slice the pos emb for current inference
|
||||
query = apply_rotary_pos_emb(query, q_pos_emb)
|
||||
key = apply_rotary_pos_emb(key, k_pos_emb)
|
||||
|
||||
bsz, _, n_heads, head_dim = key.size()
|
||||
|
||||
if layer_past is not None:
|
||||
kv_seq_len += layer_past[0].shape[1]
|
||||
# past_key, past_value = layer_past[0], layer_past[1]
|
||||
# key = torch.cat((past_key, key), dim=1)
|
||||
# value = torch.cat((past_value, value), dim=1)
|
||||
cache_k = layer_past[0].transpose(1, 2)
|
||||
cache_v = layer_past[1].transpose(1, 2)
|
||||
if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
|
||||
# allocate new
|
||||
new_cache_k, new_cache_v = extend_kv_cache(bsz,
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
cache_k.size(2),
|
||||
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||
dtype=cache_k.dtype,
|
||||
device=hidden_states.device)
|
||||
new_cache_k[:] = cache_k
|
||||
new_cache_v[:] = cache_v
|
||||
cache_k = new_cache_k
|
||||
cache_v = new_cache_v
|
||||
|
||||
key_states, value_states = append_kv_cache(cache_k, cache_v,
|
||||
key.transpose(1, 2), value.transpose(1, 2))
|
||||
key = key_states.transpose(1, 2)
|
||||
value = value_states.transpose(1, 2)
|
||||
elif use_cache:
|
||||
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
|
||||
new_key_states, new_value_states = init_kv_cache(bsz,
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
kv_seq_len,
|
||||
max_cache_length,
|
||||
dtype=key.dtype,
|
||||
device=hidden_states.device)
|
||||
new_key_states[:] = key.transpose(1, 2)
|
||||
new_value_states[:] = value.transpose(1, 2)
|
||||
key = new_key_states.transpose(1, 2)
|
||||
value = new_value_states.transpose(1, 2)
|
||||
|
||||
if use_cache:
|
||||
present = (key, value)
|
||||
else:
|
||||
present = None
|
||||
|
||||
if self.use_logn_attn and not self.training:
|
||||
if self.logn_tensor.device != query.device or self.logn_tensor.dtype != query.dtype:
|
||||
self.logn_tensor = self.logn_tensor.to(query.device).type_as(query)
|
||||
seq_start = key.size(1) - query.size(1)
|
||||
seq_end = key.size(1)
|
||||
logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :]
|
||||
query = query * logn_tensor.expand_as(query)
|
||||
|
||||
query = query.permute(0, 2, 1, 3)
|
||||
key = key.permute(0, 2, 1, 3)
|
||||
value = value.permute(0, 2, 1, 3)
|
||||
attn_output, attn_weight = self._attn(
|
||||
query, key, value, registered_causal_mask, attention_mask, head_mask
|
||||
)
|
||||
context_layer = self._merge_heads(
|
||||
attn_output, self.num_heads, self.head_dim
|
||||
)
|
||||
|
||||
attn_output = self.c_proj(context_layer)
|
||||
|
||||
outputs = (attn_output, present)
|
||||
if output_attentions:
|
||||
outputs += (attn_weight,)
|
||||
|
||||
return outputs
|
||||
Loading…
Reference in a new issue