LLM: support kv_cache optimization for Qwen-VL-Chat (#9193)

* dupport qwen_vl_chat

* fix style
This commit is contained in:
Ruonan Wang 2023-10-17 13:33:56 +08:00 committed by GitHub
parent 1cd9ab15b8
commit c0497ab41b
3 changed files with 172 additions and 8 deletions

View file

@ -42,7 +42,7 @@ if __name__ == '__main__':
# which convert the relevant layers in the model into INT4 format # which convert the relevant layers in the model into INT4 format
model = AutoModelForCausalLM.from_pretrained(model_path, model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True, load_in_4bit=True,
optimize_model=False, optimize_model=True,
trust_remote_code=True, trust_remote_code=True,
use_cache=True) use_cache=True)
model = model.to('xpu') model = model.to('xpu')

View file

@ -331,6 +331,17 @@ def optimize(model):
llama_rms_norm_forward llama_rms_norm_forward
) )
elif model.config.model_type == "qwen": elif model.config.model_type == "qwen":
if hasattr(model.config, "visual"):
# for Qwen-VL-Chat
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
from bigdl.llm.transformers.models.qwen_vl import qwen_attention_forward_vl
convert_forward(model,
module.QWenAttention,
qwen_attention_forward_vl
)
else:
# for Qwen-7B and Qwen-14B
modeling_module_name = model.__class__.__module__ modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name) module = importlib.import_module(modeling_module_name)
from bigdl.llm.transformers.models.qwen import qwen_attention_forward from bigdl.llm.transformers.models.qwen import qwen_attention_forward

View file

@ -0,0 +1,153 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://huggingface.co/Qwen/Qwen-VL-Chat/blob/bbe5a805de49a41b7343d240ab84d4c305caa265/modeling_qwen.py
#
# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import importlib
import math
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from transformers.utils import logging
from bigdl.llm.transformers.models.utils import extend_kv_cache, init_kv_cache, append_kv_cache
from bigdl.llm.transformers.models.utils import rotate_half
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
def apply_rotary_pos_emb(t, freqs):
cos, sin = freqs
rot_dim = freqs[0].shape[-1]
t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
t_ = t_.float()
t_pass_ = t_pass_.float()
t_ = (t_ * cos) + (rotate_half(t_) * sin)
return torch.cat((t_, t_pass_), dim=-1).type_as(t)
def qwen_attention_forward_vl(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
rotary_pos_emb: Optional[List[torch.Tensor]] = None,
registered_causal_mask: Optional[torch.Tensor] = None,
layer_past: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
):
mixed_x_layer = self.c_attn(hidden_states)
query, key, value = mixed_x_layer.split(self.split_size, dim=2)
query = self._split_heads(query, self.num_heads, self.head_dim)
key = self._split_heads(key, self.num_heads, self.head_dim)
value = self._split_heads(value, self.num_heads, self.head_dim)
kv_seq_len = hidden_states.size()[1]
if rotary_pos_emb is not None:
cur_len = query.shape[1]
rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
rotary_pos_emb = (rotary_pos_emb,) * 2
q_pos_emb, k_pos_emb = rotary_pos_emb
# Slice the pos emb for current inference
query = apply_rotary_pos_emb(query, q_pos_emb)
key = apply_rotary_pos_emb(key, k_pos_emb)
bsz, _, n_heads, head_dim = key.size()
if layer_past is not None:
kv_seq_len += layer_past[0].shape[1]
# past_key, past_value = layer_past[0], layer_past[1]
# key = torch.cat((past_key, key), dim=1)
# value = torch.cat((past_value, value), dim=1)
cache_k = layer_past[0].transpose(1, 2)
cache_v = layer_past[1].transpose(1, 2)
if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
# allocate new
new_cache_k, new_cache_v = extend_kv_cache(bsz,
self.num_heads,
self.head_dim,
cache_k.size(2),
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=cache_k.dtype,
device=hidden_states.device)
new_cache_k[:] = cache_k
new_cache_v[:] = cache_v
cache_k = new_cache_k
cache_v = new_cache_v
key_states, value_states = append_kv_cache(cache_k, cache_v,
key.transpose(1, 2), value.transpose(1, 2))
key = key_states.transpose(1, 2)
value = value_states.transpose(1, 2)
elif use_cache:
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
new_key_states, new_value_states = init_kv_cache(bsz,
self.num_heads,
self.head_dim,
kv_seq_len,
max_cache_length,
dtype=key.dtype,
device=hidden_states.device)
new_key_states[:] = key.transpose(1, 2)
new_value_states[:] = value.transpose(1, 2)
key = new_key_states.transpose(1, 2)
value = new_value_states.transpose(1, 2)
if use_cache:
present = (key, value)
else:
present = None
if self.use_logn_attn and not self.training:
if self.logn_tensor.device != query.device or self.logn_tensor.dtype != query.dtype:
self.logn_tensor = self.logn_tensor.to(query.device).type_as(query)
seq_start = key.size(1) - query.size(1)
seq_end = key.size(1)
logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :]
query = query * logn_tensor.expand_as(query)
query = query.permute(0, 2, 1, 3)
key = key.permute(0, 2, 1, 3)
value = value.permute(0, 2, 1, 3)
attn_output, attn_weight = self._attn(
query, key, value, registered_causal_mask, attention_mask, head_mask
)
context_layer = self._merge_heads(
attn_output, self.num_heads, self.head_dim
)
attn_output = self.c_proj(context_layer)
outputs = (attn_output, present)
if output_attentions:
outputs += (attn_weight,)
return outputs