[LLM] Use fp32 as dtype when batch_size <=8 and qtype is q4_0/q8_0/fp8 (#9365)
This commit is contained in:
parent
84ab614aab
commit
bfd9f88f0d
2 changed files with 54 additions and 1 deletions
|
|
@ -426,6 +426,7 @@ class LowBitLinear(nn.Linear):
|
||||||
try:
|
try:
|
||||||
import intel_extension_for_pytorch
|
import intel_extension_for_pytorch
|
||||||
import linear_q4_0
|
import linear_q4_0
|
||||||
|
from bigdl.llm.utils.xmx_checker import use_xmx
|
||||||
except ModuleNotFoundError:
|
except ModuleNotFoundError:
|
||||||
invalidInputError(False,
|
invalidInputError(False,
|
||||||
"Please `pip install bigdl_core_xe` first.")
|
"Please `pip install bigdl_core_xe` first.")
|
||||||
|
|
@ -440,7 +441,8 @@ class LowBitLinear(nn.Linear):
|
||||||
# current workaround to reduce first token latency of fp32 input
|
# current workaround to reduce first token latency of fp32 input
|
||||||
# sometimes fp16 cause nan and training instability
|
# sometimes fp16 cause nan and training instability
|
||||||
# disable the conversion when training
|
# disable the conversion when training
|
||||||
if self.conver_to_half and x_2d.shape[0] > 1 and x_2d.dtype == torch.float32:
|
if self.conver_to_half and x_2d.shape[0] > 1 and x_2d.dtype == torch.float32 and \
|
||||||
|
not use_xmx(x_2d, self.weight.qtype):
|
||||||
x_2d = x_2d.half()
|
x_2d = x_2d.half()
|
||||||
result = linear_q4_0.forward_new(x_2d, self.weight.data, self.weight.qtype,
|
result = linear_q4_0.forward_new(x_2d, self.weight.data, self.weight.qtype,
|
||||||
input_seq_size)
|
input_seq_size)
|
||||||
|
|
|
||||||
51
python/llm/src/bigdl/llm/utils/xmx_checker.py
Normal file
51
python/llm/src/bigdl/llm/utils/xmx_checker.py
Normal file
|
|
@ -0,0 +1,51 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import intel_extension_for_pytorch as ipex
|
||||||
|
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
|
||||||
|
|
||||||
|
|
||||||
|
SYM_INT4 = ggml_tensor_qtype["sym_int4"]
|
||||||
|
SYM_INT8 = ggml_tensor_qtype["sym_int8"]
|
||||||
|
NF4 = ggml_tensor_qtype["nf4"]
|
||||||
|
NF3 = ggml_tensor_qtype["nf3"]
|
||||||
|
FP8 = ggml_tensor_qtype["fp8"]
|
||||||
|
FP4 = ggml_tensor_qtype["fp4"]
|
||||||
|
MOFQ4 = ggml_tensor_qtype["mixed_4bit"]
|
||||||
|
|
||||||
|
|
||||||
|
class XMXChecker:
|
||||||
|
def __init__(self):
|
||||||
|
self.support_xmx = self.check_xmx()
|
||||||
|
self.supported_qtype = [SYM_INT4, SYM_INT8, FP8]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def check_xmx():
|
||||||
|
name = torch.xpu.get_device_name(0)
|
||||||
|
# todo: not sure how to check xmx or how to get device name for now
|
||||||
|
return "Arc(TM)" in name or "GPU Max" in name or "GPU Flex" in name
|
||||||
|
|
||||||
|
def check(self, input_tensor: torch.Tensor, qtype: int):
|
||||||
|
return self.support_xmx and 1 < input_tensor.shape[0] <= 8 and \
|
||||||
|
qtype in self.supported_qtype
|
||||||
|
|
||||||
|
|
||||||
|
xmx_checker = XMXChecker()
|
||||||
|
|
||||||
|
|
||||||
|
def use_xmx(input_tensor: torch.Tensor, qtype: int):
|
||||||
|
return xmx_checker.check(input_tensor, qtype)
|
||||||
Loading…
Reference in a new issue